Compare commits
	
		
			1 Commits
		
	
	
		
			modulus-pl
			...
			b4bc492f96
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | b4bc492f96 | 
							
								
								
									
										3
									
								
								.vscode/settings.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										3
									
								
								.vscode/settings.json
									
									
									
									
										vendored
									
									
								
							| @@ -4,6 +4,7 @@ | ||||
|         "cmath": "cpp", | ||||
|         "*.tcc": "cpp", | ||||
|         "string": "cpp", | ||||
|         "ranges": "cpp" | ||||
|         "ranges": "cpp", | ||||
|         "numeric": "cpp" | ||||
|     } | ||||
| } | ||||
| @@ -25,8 +25,7 @@ extern long last_p; | ||||
| #define max(x,y) ( (x) > (y) ? (x) : (y) ) | ||||
| #define min(x,y) ( (x) < (y) ? (x) : (y) ) | ||||
|  | ||||
| #define MOTOR_MAX_POWER         127.0   // Highest value accepted by motor control functions | ||||
| #define DRIVE_MOTOR_MAX_POWER   64.0    // Maximum power for drive motors  | ||||
| #define MOTOR_MAX_POWER 127.0 // Highest value accepted by motor control functions | ||||
|  | ||||
| // Drive modes | ||||
| #define DRIVE_STOP          0 | ||||
| @@ -56,20 +55,19 @@ extern long last_p; | ||||
| // Length of the buffer to monitor recent steering encoder positions to calculate speed | ||||
| // The buffer will track the last N states of the encoders, and the times at which they were recorded, to determine the steering motors' current speeds | ||||
| // This value must always be at least 2, otherwise the code will break due to there being an array with a zero or negative length or a division by zero | ||||
| #define ENCODER_BUFFER_ENTRY_COUNT 3 | ||||
| #define ENCODER_BUFFER_ENTRY_COUNT 5 | ||||
|  | ||||
| // Steering parameters | ||||
| #define STEERING_ENCODER_TICKS_PER_ROTATION     (1024.0 * 8.0)                                  // Number of encoder ticks per full rotation of each swerve drive steering motor | ||||
| #define STEERING_ENCODER_TICKS_PER_DEGREE       (STEERING_ENCODER_TICKS_PER_ROTATION / 360.0)   // Number of encoder ticks per degree of rotation for the swerve drive steering motors | ||||
| #define STEERING_MOTOR_SPEED_LIMIT 80.0                                                         // Maximum speed allowed for the steering motors (out of 127.0) | ||||
| // Steering PID parameters | ||||
| #define STEERING_SLOW_DELTA 35.0                                                                // Start decelerating the steering motors linearly when they're within this many degrees of their target angle | ||||
| #define STEERING_ACCEL_SLOW_DELAY 0.20                                                          // Estimated acceleration delay of steering motors at low speeds (seconds) | ||||
| #define STEERING_TOLERANCE 1.0                                                                  // Steering tolerance in degrees | ||||
| #define STEERING_STALL_DETECT_ANGULAR_SPEED 5.0                                                 // Detect steering motor stall if measured angular speed is below this | ||||
| #define STEERING_SLOW_APPROACH_SPEED (0.16 * (MOTOR_MAX_POWER / STEERING_MOTOR_SPEED_LIMIT))    // Slow approach speed for steering motors | ||||
| #define STEERING_TOLERANCE_DISABLE_DRIVE 30.0                                                    // Disable the drive motors if any steering motor is off-target by more than this many degrees | ||||
| #define STEERING_HOVER_RANGE 10.0                                                               // Angular range where steering motors tend to hover around their targets | ||||
|  | ||||
| // Number of encoder ticks per full rotation of each swerve drive steering motor | ||||
| #define STEERING_ENCODER_TICKS_PER_ROTATION     (1024.0 * 8.0) | ||||
| // Number of encoder ticks per degree of rotation for the swerve drive steering motors | ||||
| #define STEERING_ENCODER_TICKS_PER_DEGREE       (STEERING_ENCODER_TICKS_PER_ROTATION / 360.0) | ||||
|  | ||||
| // Maximum speed allowed for the steering motors (out of 127.0) | ||||
| #define STEERING_MOTOR_SPEED_LIMIT 127.0 // TODO as of 20230927, lower this if they're spinning too fast for the robot to handle | ||||
|  | ||||
| // Start decelerating the steering motors linearly when they're within this many degrees of their target angle | ||||
| #define STEERING_SLOW_DELTA 30.0 | ||||
|  | ||||
| // Claw status | ||||
| #define CLAW_UNKNOWN        1   // Position unknown | ||||
|   | ||||
							
								
								
									
										85
									
								
								src/main.cpp
									
									
									
									
									
								
							
							
						
						
									
										85
									
								
								src/main.cpp
									
									
									
									
									
								
							| @@ -44,8 +44,8 @@ PCF8574 ioex2(0x21, 20, 21); | ||||
|  | ||||
| // JANK: soldered to pico or headers | ||||
| PioEncoder enc1(18); // Front Left | ||||
| PioEncoder enc2(0); // Front Right | ||||
| PioEncoder enc3(2); // Back Left | ||||
| PioEncoder enc2(0); // Front Right // TODO WIRING AND CONFIRMATION 20230929 | ||||
| PioEncoder enc3(27); // Back Left // TODO WIRING AND CONFIRMATION 20230929 | ||||
| PioEncoder enc4(14);  // Back Right | ||||
|  | ||||
|  | ||||
| @@ -103,8 +103,8 @@ Sabertooth actuators(130, Serial2); | ||||
| #define TALON_PIN_3       7 | ||||
| #define TALON_PIN_4       9 | ||||
| // pins for arm servos | ||||
| #define ARM_SERVO_PIN_1   26 | ||||
| #define ARM_SERVO_PIN_2   27 | ||||
| #define ARM_SERVO_PIN_1   2 | ||||
| #define ARM_SERVO_PIN_2   3 | ||||
| #define ARM_SERVO_PIN_3   8 | ||||
|  | ||||
| static _107_::Servo talon1, talon2, talon3, talon4, arm1, arm2, arm3; | ||||
| @@ -407,13 +407,10 @@ void set_motor(byte motor, int speed) { | ||||
|   // 14      : drive 11-13 with identical position & speed | ||||
|   // 15 - 17 : arm servos | ||||
|   // speed is -127 to 127 | ||||
|    | ||||
|   Serial.print("Driving motor "); | ||||
|   Serial.print(motor); | ||||
|   Serial.print(" with speed "); | ||||
|   Serial.println(speed); | ||||
|    | ||||
|  | ||||
|   if (motor <= 4) { | ||||
|     // swerve controls | ||||
|     speed *= (((motor % 2) * 2) - 1); // Flip motors 2 and 4 | ||||
| @@ -437,8 +434,7 @@ void set_motor(byte motor, int speed) { | ||||
|     //stepperX.setSpeed((float)speed); | ||||
|     if (abs(speed) > 0)  | ||||
|       ioex1.digitalWrite(2, LOW); // enable | ||||
|     else  | ||||
|       stepperX_pos = stepperX.currentPosition(); | ||||
|        | ||||
|      | ||||
|     stepperX.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); | ||||
|     stepperX_pos = speed * 96 + stepperX.currentPosition(); | ||||
| @@ -450,8 +446,7 @@ void set_motor(byte motor, int speed) { | ||||
|     //stepperY.setSpeed((float)speed); | ||||
|     if (abs(speed) > 0)  | ||||
|       ioex1.digitalWrite(2, LOW); // enable | ||||
|     else  | ||||
|       stepperY_pos = stepperY.currentPosition(); | ||||
|        | ||||
|  | ||||
|     stepperY.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); | ||||
|     stepperY_pos = speed * 96 + stepperY.currentPosition(); | ||||
| @@ -463,8 +458,6 @@ void set_motor(byte motor, int speed) { | ||||
|     //stepperY.setSpeed((float)speed); | ||||
|     if (abs(speed) > 0)  | ||||
|       ioex1.digitalWrite(2, LOW); // enable | ||||
|     else  | ||||
|       stepperZ_pos = stepperZ.currentPosition(); | ||||
|        | ||||
|     stepperZ.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); | ||||
|     stepperZ_pos = speed * 96 + stepperZ.currentPosition(); | ||||
| @@ -479,34 +472,21 @@ void set_motor(byte motor, int speed) { | ||||
|  | ||||
|       stepperX.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); | ||||
|       stepperX.moveTo(stepperX_pos); | ||||
|       //stepperY.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); | ||||
|       //stepperY.moveTo(stepperX_pos); | ||||
|       stepperY.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); | ||||
|       stepperY.moveTo(stepperX_pos); | ||||
|       stepperZ.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); | ||||
|       stepperZ.moveTo(stepperX_pos); | ||||
|  | ||||
|       stepperX.runState(); | ||||
|       //stepperY.runState(); | ||||
|       stepperY.runState(); | ||||
|       stepperZ.runState(); | ||||
|     } else { | ||||
|       ioex1.digitalWrite(2, HIGH); // disable | ||||
|  | ||||
|       // stepperX_pos = stepperX.currentPosition(); | ||||
|  | ||||
|       stepperX.setCurrentPosition(stepperX_pos); | ||||
|       //stepperY.setCurrentPosition(stepperX_pos); | ||||
|       stepperZ.setCurrentPosition(stepperX_pos); | ||||
|  | ||||
|       //stepperX.stop(); | ||||
|       //stepperY.stop(); | ||||
|       //stepperZ.stop(); | ||||
|        | ||||
|        | ||||
|     } | ||||
|   } | ||||
|   else if (motor == 15) | ||||
|     arm1.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET)); | ||||
|   else if (motor == 16) | ||||
|     arm2.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET)); | ||||
|     arm1.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET)); | ||||
|   else if (motor == 17) | ||||
|     arm1.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET)); | ||||
| } | ||||
| @@ -609,11 +589,19 @@ void setup() { | ||||
|   ioex1.digitalWrite(3, HIGH); | ||||
|   delay(2000); | ||||
|  | ||||
|   digitalWrite(ALI1, LOW); | ||||
|   digitalWrite(BLI1, LOW); | ||||
|   digitalWrite(AHI1, LOW); | ||||
|   digitalWrite(BHI1, LOW); | ||||
|   digitalWrite(ALI2, LOW); | ||||
|   digitalWrite(BLI2, LOW); | ||||
|   digitalWrite(AHI2, LOW); | ||||
|   digitalWrite(BHI2, LOW); | ||||
|    | ||||
|   pinMode(ALI1, OUTPUT); | ||||
|   pinMode(AHI1, OUTPUT); | ||||
|   pinMode(BLI1, OUTPUT); | ||||
|   pinMode(BHI1, OUTPUT); | ||||
|   pinMode(ALI2, OUTPUT); | ||||
|   pinMode(AHI2, OUTPUT); | ||||
|   pinMode(BLI2, OUTPUT); | ||||
| @@ -706,9 +694,7 @@ void setup() { | ||||
|   enc1.begin(); | ||||
|   //enc1.flip(); | ||||
|   enc2.begin(); | ||||
|   //enc2.flip(); | ||||
|   enc3.begin(); | ||||
|   //enc3.flip(); | ||||
|   enc4.begin(); | ||||
|   Serial.println(" done"); | ||||
|   delay(20); | ||||
| @@ -984,13 +970,6 @@ void loop() { | ||||
|   } | ||||
|   swrv = updateEncoderData(swrv, enc1.getCount(), enc2.getCount(), enc3.getCount(), enc4.getCount()); // Update encoder data in the swerve_drive struct | ||||
|   swrv = updateSwerveCommand(swrv); // Calculate power for each drive and steering motor | ||||
|  | ||||
|  | ||||
|   //DEBUG TESTING code: | ||||
|   Serial.printf("FL spin target %f \t\t at %f\r\n", swrv.front_left_target_spin, normalizeAngle(swrv.front_right_spin_angle)); | ||||
|   Serial.printf("FR spin target %f \t\t at %f\r\n", swrv.front_right_target_spin, normalizeAngle(swrv.front_right_spin_angle)); | ||||
|   Serial.printf("BL spin target %f \t\t at %f\r\n", swrv.back_left_target_spin, normalizeAngle(swrv.back_left_spin_angle)); | ||||
|   Serial.printf("BR spin target %f \t\t at %f\r\n", swrv.back_right_target_spin, normalizeAngle(swrv.back_right_spin_angle)); | ||||
|    | ||||
|   // Arm motor control (stepper motors), DPAD_UP to move arm up, DPAD_DOWN to move arm down, both or neither being pressed stops the arm | ||||
|   float arm_speed = (float) (((int) getButton(DPAD_UP)) - ((int) getButton(DPAD_DOWN))); // TODO 20230929 confirm speed and polarity | ||||
| @@ -998,7 +977,7 @@ void loop() { | ||||
|  | ||||
|   // Claw servo control | ||||
|   int new_claw_command = CLAW_COMMAND_UNSET; | ||||
|   int claw_direction = ((int) getButton(CLAW_OPEN_BUTTON)) - ((int) getButton(CLAW_CLOSE_BUTTON)); | ||||
|   int claw_direction = getButton(CLAW_OPEN_BUTTON) - getButton(CLAW_CLOSE_BUTTON); | ||||
|   switch(claw_direction) { | ||||
|     case 0: | ||||
|       new_claw_command = CLAW_COMMAND_STAY; | ||||
| @@ -1016,34 +995,26 @@ void loop() { | ||||
|   int new_tilt_command = TILT_COMMAND_UNSET; | ||||
|   clawarm = updateTiltCommand(clawarm, new_tilt_command); | ||||
|  | ||||
|  | ||||
|   telemetry(zeroed_lx_float, zeroed_ly_float, zeroed_rx_float, zeroed_ry_float, loop_drive_mode, left_joystick_angle, left_joystick_magnitude, right_joystick_angle, right_joystick_magnitude, previous_loop_processing_duration_core_0); // DEBUG ONLY, telemetry | ||||
|  | ||||
|  | ||||
|   // update motors after calculation | ||||
|   set_motor(FLDRIVE, swrv.front_left_power); | ||||
|   set_motor(BRDRIVE, swrv.back_right_power); | ||||
|   set_motor(FRDRIVE, swrv.front_right_power); | ||||
|   set_motor(BLDRIVE, swrv.back_left_power); | ||||
|    | ||||
|  | ||||
|   // Lock the spinlock and transfer the steering motor data to core 1, which will send the data to the sabertooth motor controllers | ||||
|   spinlock_lock_core_0(&drive_power_command_spinlock_flag); | ||||
|  | ||||
|   power_data_transfer_fl = swrv.front_left_spin_power; | ||||
|   power_data_transfer_fl = swrv.front_left_power; | ||||
|   power_data_transfer_fr = swrv.front_right_spin_power; | ||||
|   power_data_transfer_bl = swrv.back_left_spin_power; | ||||
|   power_data_transfer_br = swrv.back_right_spin_power; | ||||
|   spinlock_release(&drive_power_command_spinlock_flag); | ||||
|  | ||||
|   // update stepper motors | ||||
|   // TESTING: comment out this code to check performance impact | ||||
|   set_motor(LIFTALL, clawarm.arm_set_motor_int); | ||||
|  | ||||
|   // update servos | ||||
|   Serial.printf("claw set motor int %i\r\n", clawarm.claw_set_motor_int); | ||||
|   set_motor(ARMSERVO1, clawarm.claw_set_motor_int); | ||||
|   set_motor(ARMSERVO2, - clawarm.claw_set_motor_int); | ||||
|   /* | ||||
|   // TODO: Figure out servo mapping | ||||
|   set_motor(SERVOTILT, clawarm.tilt_set_motor_int); | ||||
| @@ -1072,18 +1043,18 @@ void drive_control_core_1() { // Control drive motors from core 1 from loop1() f | ||||
|   spinlock_release(&drive_power_command_spinlock_flag); // Release the spinlock | ||||
|  | ||||
|   // Set motors if the requested power is different than the previously requested power | ||||
|   //if(local_fl != power_data_transfer_prev_fl) { | ||||
|   if(local_fl != power_data_transfer_prev_fl) { | ||||
|     set_motor(FLSTEER, local_fl); | ||||
|   //} | ||||
|   //if(local_fr != power_data_transfer_prev_fr) { | ||||
|   } | ||||
|   if(local_fr != power_data_transfer_prev_fr) { | ||||
|     set_motor(FRSTEER, local_fr); | ||||
|   //} | ||||
|   //if(local_bl != power_data_transfer_prev_bl) { | ||||
|   } | ||||
|   if(local_bl != power_data_transfer_prev_bl) { | ||||
|     set_motor(BLSTEER, local_bl); | ||||
|   //} | ||||
|   //if(local_br != power_data_transfer_prev_br) { | ||||
|   } | ||||
|   if(local_br != power_data_transfer_prev_br) { | ||||
|     set_motor(BRSTEER, local_br); | ||||
|   //} | ||||
|   } | ||||
|  | ||||
|   // Set the previously requested power data to the current power data, will be read in the next loop | ||||
|   power_data_transfer_prev_fl = local_fl; | ||||
|   | ||||
| @@ -106,7 +106,7 @@ manipulator_arm setArmSpeed(manipulator_arm input, float arm_speed) // Set the a | ||||
|     manipulator_arm out = input; | ||||
|     arm_speed = out.arm_speed_coefficient * min(out.arm_speed_limit, max(-out.arm_speed_limit, arm_speed)); | ||||
|     out.arm_speed = arm_speed; | ||||
|     out.arm_set_motor_int = min(127, max(-127, (int) (127.0f * arm_speed))) * 2; | ||||
|     out.arm_set_motor_int = min(127, max(-127, (int) (127.0f * arm_speed))); | ||||
|     return out; | ||||
| } | ||||
| manipulator_arm setArmSpeedLimit(manipulator_arm input, float arm_speed_limit) // Set the arm's speed limit (applied before coefficient), limit must be between 0.0 and 1.0 | ||||
|   | ||||
| @@ -54,33 +54,18 @@ swerve_drive initializeSwerveDrive(int front_left_encoder, int front_right_encod | ||||
| swerve_drive updateSwerveCommand(swerve_drive input) | ||||
| { | ||||
|     swerve_drive out = input; | ||||
|     float new_drive_coefficient = out.target_drive_power; | ||||
|  | ||||
|     // Set the new speed of the steering motors | ||||
|     if(/*(out.target_drive_power != 0.0f || out.current_drive_power != 0.0f) &&*/ out.enable_steering) { // Only set the steering power if the robot is trying to move, and if steering is enabled | ||||
|     if((out.target_drive_power != 0.0f || out.current_drive_power != 0.0f) && out.enable_steering) { // Only set the steering power if the robot is trying to move, and if steering is enabled | ||||
|         // Calculate the distance and direction each motor needs to steer from where it is now | ||||
|         float front_left_delta = closestAngle(out.front_left_spin_angle, out.front_left_target_spin); | ||||
|         float front_right_delta = closestAngle(out.front_right_spin_angle, out.front_right_target_spin); | ||||
|         float back_left_delta = closestAngle(out.back_left_spin_angle, out.back_left_target_spin); | ||||
|         float back_right_delta = closestAngle(out.back_right_spin_angle, out.back_right_target_spin); | ||||
|         // Use the delta and speed of each steering motor to calculate the necessary speed | ||||
|         out.front_left_spin_power = calculateSteeringMotorSpeed(front_left_delta, out.front_left_measured_spin_speed); | ||||
|         out.front_right_spin_power = calculateSteeringMotorSpeed(front_right_delta, out.front_right_measured_spin_speed); | ||||
|         out.back_left_spin_power = calculateSteeringMotorSpeed(back_left_delta, out.back_left_measured_spin_speed); | ||||
|         out.back_right_spin_power = calculateSteeringMotorSpeed(back_right_delta, out.back_right_measured_spin_speed); | ||||
|  | ||||
|         float max_abs_steering_delta = max(max(fabs(front_left_delta), fabs(front_right_delta)), max(fabs(back_left_delta), fabs(back_right_delta))); | ||||
|         if (max_abs_steering_delta > STEERING_TOLERANCE_DISABLE_DRIVE) { | ||||
|             new_drive_coefficient = 0; | ||||
|         } | ||||
|         Serial.printf("max_abs_steering_delta = %f\t\tndc = %f\r\n", max_abs_steering_delta, new_drive_coefficient); | ||||
|  | ||||
|         // TESTING DEBUG print 20230929 | ||||
|         Serial.printf("FL delta = %f\t\tFL steer = %f\r\n", front_left_delta, out.front_left_spin_power); | ||||
|         Serial.printf("FR delta = %f\t\tFR steer = %f\r\n", front_right_delta, out.front_right_spin_power); | ||||
|         Serial.printf("BL delta = %f\t\tBL steer = %f\r\n", back_left_delta, out.back_left_spin_power); | ||||
|         Serial.printf("BR delta = %f\t\tBR steer = %f\r\n", back_right_delta, out.back_right_spin_power); | ||||
|          | ||||
|  | ||||
|         out.front_left_spin_power = calculateSteeringMotorSpeed(front_left_delta); | ||||
|         out.front_right_spin_power = calculateSteeringMotorSpeed(front_right_delta); | ||||
|         out.back_left_spin_power = calculateSteeringMotorSpeed(back_left_delta); | ||||
|         out.back_right_spin_power = calculateSteeringMotorSpeed(back_right_delta); | ||||
|     } else { // Stop the steering motors if the robot is stopped and not trying to move, or if steering is disabled | ||||
|         out.front_left_spin_power = 0.0f; | ||||
|         out.front_right_spin_power = 0.0f; | ||||
| @@ -89,43 +74,24 @@ swerve_drive updateSwerveCommand(swerve_drive input) | ||||
|     } | ||||
|  | ||||
|     // Set the current drive power to the target drive power, TODO: this is TEMPORARY, add in something to slow the current (set) speed until the wheels are in the correct direction | ||||
|     //out.current_drive_power = out.target_drive_power; | ||||
|     out.current_drive_power = out.target_drive_power;   | ||||
|  | ||||
|     // Set the new drive motor power, apply coefficients, set between -127.0 and 127.0 | ||||
|     out.current_drive_power = new_drive_coefficient; | ||||
|     out.front_left_power = new_drive_coefficient * out.front_left_coefficient * DRIVE_MOTOR_MAX_POWER; | ||||
|     out.front_right_power = new_drive_coefficient * out.front_right_coefficient * DRIVE_MOTOR_MAX_POWER; | ||||
|     out.back_left_power = new_drive_coefficient * out.back_left_coefficient * DRIVE_MOTOR_MAX_POWER; | ||||
|     out.back_right_power = new_drive_coefficient * out.back_right_coefficient * DRIVE_MOTOR_MAX_POWER; | ||||
|     out.front_left_power = out.current_drive_power * out.front_left_coefficient * MOTOR_MAX_POWER; | ||||
|     out.front_right_power = out.current_drive_power * out.front_right_coefficient * MOTOR_MAX_POWER; | ||||
|     out.back_left_power = out.current_drive_power * out.back_left_coefficient * MOTOR_MAX_POWER; | ||||
|     out.back_right_power = out.current_drive_power * out.back_right_coefficient * MOTOR_MAX_POWER; | ||||
|      | ||||
|     return out; | ||||
| } | ||||
|  | ||||
| float calculateSteeringMotorSpeed(float steering_delta, float current_angular_speed) // Calculate the speed of a steering motor based on its distance from its target angle and its current angular speed | ||||
| float calculateSteeringMotorSpeed(float steering_delta) // Calculate the speed of a steering motor based on its distance from its target angle | ||||
| { | ||||
|     float abs_steering_delta = fabs(steering_delta); | ||||
|     if(abs_steering_delta > STEERING_SLOW_DELTA && abs_steering_delta > STEERING_TOLERANCE) { // In full speed range, still far enough away from the target angle | ||||
|         return STEERING_MOTOR_SPEED_LIMIT * (steering_delta < 0.0f ? -1.0f : 1.0f); | ||||
|     if(abs_steering_delta > STEERING_SLOW_DELTA) { // In full speed range, still far enough away from the target angle | ||||
|         return STEERING_MOTOR_SPEED_LIMIT; | ||||
|     } else { // Slow down the speed of the steering motor since it's close to its target angle | ||||
|  | ||||
|         float calc_steering_delta = steering_delta + (STEERING_ACCEL_SLOW_DELAY * current_angular_speed); // Modify the steering delta to the estimated delta in STEERING_ACCEL_SLOW_DELAY seconds to account for motor acceleration | ||||
|         float calc_steering_limit_signed = STEERING_MOTOR_SPEED_LIMIT * (calc_steering_delta < 0.0f ? -1.0f : 1.0f); // Update the sign to account for the future location estimation above | ||||
|         float calc_abs_steering_delta = fabs(calc_steering_delta); // Update abs_steering_delta with the new steering_delta | ||||
|         float steering_speed_fraction = powf(calc_abs_steering_delta / STEERING_SLOW_DELTA, 2.0f); // Fraction of full speed being used | ||||
|         //return steering_limit_signed * (1.0f - (abs_steering_delta / STEERING_SLOW_DELTA)); | ||||
|         if(current_angular_speed < STEERING_STALL_DETECT_ANGULAR_SPEED || steering_speed_fraction < STEERING_SLOW_APPROACH_SPEED) { // Detect motor stall during approach and increase speed to allow for approach | ||||
|             steering_speed_fraction = STEERING_SLOW_APPROACH_SPEED; | ||||
|              | ||||
|             if(calc_abs_steering_delta < STEERING_HOVER_RANGE) { // Decrease speed further if the steering is extremely close to the target | ||||
|                 steering_speed_fraction *= (calc_abs_steering_delta / STEERING_HOVER_RANGE); | ||||
|             } else if(abs_steering_delta < STEERING_HOVER_RANGE) { | ||||
|                 steering_speed_fraction *= (abs_steering_delta / STEERING_HOVER_RANGE); | ||||
|             } | ||||
|         } | ||||
|         if(calc_abs_steering_delta < STEERING_TOLERANCE) { // Stop the steering motors if they are within the tolerance range | ||||
|             return 0.0f; | ||||
|         } | ||||
|  | ||||
|         return calc_steering_limit_signed * steering_speed_fraction; // Apply the direction | ||||
|         return STEERING_MOTOR_SPEED_LIMIT * (1.0f - (abs_steering_delta / STEERING_SLOW_DELTA)); | ||||
|     } | ||||
| } | ||||
|  | ||||
| @@ -268,7 +234,7 @@ swerve_drive rotationDrive(swerve_drive input, float target_speed) // Implementa | ||||
|  | ||||
|     //float normalized_target_angle = normalizeAngle(target_angle); // Normalize the target angle | ||||
|  | ||||
|     out = setTargetSpin(out, 45.0, 135.0, 315.0, 225.0); // Set the target angle for each rotation motor | ||||
|     out = setTargetSpin(out, 45.0, 135.0, 225.0, 315.0); // Set the target angle for each rotation motor | ||||
|     out = setMotorCoefficients(out, 1.0, 1.0, 1.0, 1.0); // Set the motor speed coefficients to 1 for all motors | ||||
|     out = setDriveTargetPower(out, target_speed); // Set the power | ||||
|  | ||||
|   | ||||
| @@ -81,7 +81,7 @@ swerve_drive initializeSwerveDrive(int front_left_encoder, int front_right_encod | ||||
|  | ||||
| swerve_drive updateSwerveCommand(swerve_drive input); // This function calculates the robot's current speed and attempts to modify the current state of the drive towards the target drive state | ||||
|  | ||||
| float calculateSteeringMotorSpeed(float steering_delta, float current_angular_speed); // Calculate the speed of a steering motor based on its distance from its target angle and its current angular speed | ||||
| float calculateSteeringMotorSpeed(float steering_delta); // Calculate the speed of a steering motor based on its distance from its target angle | ||||
|  | ||||
| swerve_drive updateEncoderData(swerve_drive in, int front_left_encoder, int front_right_encoder, int back_left_encoder, int back_right_encoder); // Process new encoder data, calculate the speed and angle of the steering motors | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user