Initial commit - test serial

This commit is contained in:
Cole A. Deck
2024-03-24 22:20:00 -05:00
commit a4b1c1b7ed
273 changed files with 43716 additions and 0 deletions

View File

@ -0,0 +1,65 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _SQUIGGLES_CONSTRAINTS_HPP_
#define _SQUIGGLES_CONSTRAINTS_HPP_
#include <cmath>
#include <string>
namespace squiggles {
struct Constraints {
/**
* Defines the motion constraints for a path.
*
* @param imax_vel The maximum allowable velocity for the robot in meters per
* second.
* @param imax_accel The maximum allowable acceleration for the robot in
* meters per second per second.
* @param imax_jerk The maximum allowable jerk for the robot in meters per
* second per second per second (m/s^3).
* @param imax_curvature The maximum allowable change in heading in radians
* per second. This is not set to the numeric limits by
* default as that will allow for wild paths.
* @param imin_accel The minimum allowable acceleration for the robot in
* meters per second per second.
*/
Constraints(double imax_vel,
double imax_accel = std::numeric_limits<double>::max(),
double imax_jerk = std::numeric_limits<double>::max(),
double imax_curvature = 1000,
double imin_accel = std::nan(""))
: max_vel(imax_vel),
max_accel(imax_accel),
max_jerk(imax_jerk),
max_curvature(imax_curvature) {
if (imax_accel == std::numeric_limits<double>::max()) {
min_accel = std::numeric_limits<double>::lowest();
} else {
min_accel = std::isnan(imin_accel) ? -imax_accel : imin_accel;
}
}
/**
* Serializes the Constraints data for debugging.
*
* @return The Constraints data.
*/
std::string to_string() const {
return "Constraints: {max_vel: " + std::to_string(max_vel) +
", max_accel: " + std::to_string(max_accel) +
", max_jerk: " + std::to_string(max_jerk) +
", min_accel: " + std::to_string(min_accel) + "}";
}
double max_vel;
double max_accel;
double max_jerk;
double min_accel;
double max_curvature;
};
} // namespace squiggles
#endif

View File

@ -0,0 +1,62 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _GEOMETRY_CONTROL_VECTOR_HPP_
#define _GEOMETRY_CONTROL_VECTOR_HPP_
#include <cmath>
#include <string>
#include "pose.hpp"
namespace squiggles {
class ControlVector {
public:
/**
* A vector used to specify a state along a hermite spline.
*
* @param ipose The 2D position and heading.
* @param ivel The velocity component of the vector.
* @param iaccel The acceleration component of the vector.
* @param ijerk The jerk component of the vector.
*/
ControlVector(Pose ipose,
double ivel = std::nan(""),
double iaccel = 0.0,
double ijerk = 0.0)
: pose(ipose), vel(ivel), accel(iaccel), jerk(ijerk) {}
ControlVector() = default;
/**
* Serializes the Control Vector data for debugging.
*
* @return The Control Vector data.
*/
std::string to_string() const {
return "ControlVector: {" + pose.to_string() +
", v: " + std::to_string(vel) + ", a: " + std::to_string(accel) +
", j: " + std::to_string(jerk) + "}";
}
std::string to_csv() const {
return pose.to_csv() + "," + std::to_string(vel) + "," +
std::to_string(accel) + "," + std::to_string(jerk);
}
bool operator==(const ControlVector& other) const {
return pose == other.pose && nearly_equal(vel, other.vel) &&
nearly_equal(accel, other.accel) && nearly_equal(jerk, other.jerk);
}
Pose pose;
double vel;
double accel;
double jerk;
};
} // namespace squiggles
#endif

View File

@ -0,0 +1,67 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _GEOMETRY_POSE_HPP_
#define _GEOMETRY_POSE_HPP_
#include <cmath>
#include <string>
#include "math/utils.hpp"
namespace squiggles {
class Pose {
public:
/**
* Specifies a point and heading in 2D space.
*
* @param ix The x position of the point in meters.
* @param iy The y position of the point in meters.
* @param iyaw The heading at the point in radians.
*/
Pose(double ix, double iy, double iyaw) : x(ix), y(iy), yaw(iyaw) {}
Pose() = default;
/**
* Calculates the Euclidean distance between this pose and another.
*
* @param other The point from which the distance will be calculated.
*
* @return The distance between this pose and Other.
*/
double dist(const Pose& other) const {
return std::sqrt((x - other.x) * (x - other.x) +
(y - other.y) * (y - other.y));
}
/**
* Serializes the Pose data for debugging.
*
* @return The Pose data.
*/
std::string to_string() const {
return "Pose: {x: " + std::to_string(x) + ", y: " + std::to_string(y) +
", yaw: " + std::to_string(yaw) + "}";
}
std::string to_csv() const {
return std::to_string(x) + "," + std::to_string(y) + "," +
std::to_string(yaw);
}
bool operator==(const Pose& other) const {
return nearly_equal(x, other.x) && nearly_equal(y, other.y) &&
nearly_equal(yaw, other.yaw);
}
double x;
double y;
double yaw;
};
} // namespace squiggles
#endif

View File

@ -0,0 +1,100 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _GEOMETRY_PROFILE_POINT_HPP_
#define _GEOMETRY_PROFILE_POINT_HPP_
#include <iostream>
#include <string>
#include <vector>
#include "controlvector.hpp"
#include "math/utils.hpp"
namespace squiggles {
struct ProfilePoint {
/**
* Defines a state along a motion profiled path.
*
* @param ivector The pose and associated dynamics at this state in the path.
* @param iwheel_velocities The component of the robot's velocity provided by
* each wheel in meters per second.
* @param icurvature The degree to which the curve deviates from a straight
* line at this point in 1 / meters.
* @param itime The timestamp for this state relative to the start of the
* path in seconds.
*/
ProfilePoint(ControlVector ivector,
std::vector<double> iwheel_velocities,
double icurvature,
double itime)
: vector(ivector),
wheel_velocities(iwheel_velocities),
curvature(icurvature),
time(itime) {}
ProfilePoint() = default;
/**
* Serializes the Profile Point data for debugging.
*
* @return The Profile Point data.
*/
std::string to_string() const {
std::string wheels = "{";
for (auto& w : wheel_velocities) {
wheels += std::to_string(w);
wheels += ", ";
}
wheels += "}";
return "ProfilePoint: {" + vector.to_string() + ", wheels: " + wheels +
", k: " + std::to_string(curvature) +
", t: " + std::to_string(time) + "}";
}
std::string to_csv() const {
std::string wheels = "";
for (auto& w : wheel_velocities) {
wheels += ",";
wheels += std::to_string(w);
}
return vector.to_csv() + "," + std::to_string(curvature) + "," +
std::to_string(time) + wheels;
}
bool operator==(const ProfilePoint& other) const {
for (std::size_t i = 0; i < wheel_velocities.size(); ++i) {
if (!nearly_equal(wheel_velocities[i], other.wheel_velocities[i])) {
return false;
}
}
return vector == other.vector && nearly_equal(curvature, other.curvature) &&
nearly_equal(time, other.time);
}
friend std::ostream& operator<<(std::ostream& os, const ProfilePoint& p) {
return os << "ProfilePoint(ControlVector(Pose(" +
std::to_string(p.vector.pose.x) + "," +
std::to_string(p.vector.pose.y) + "," +
std::to_string(p.vector.pose.yaw) + ")," +
std::to_string(p.vector.vel) + "," +
std::to_string(p.vector.accel) + "," +
std::to_string(p.vector.jerk) + "),{" +
std::to_string(p.wheel_velocities[0]) + "," +
std::to_string(p.wheel_velocities[1]) + "}," +
std::to_string(p.curvature) + "," + std::to_string(p.time) +
"),";
// return os << p.to_string();
}
ControlVector vector;
std::vector<double> wheel_velocities;
double curvature;
double time;
};
} // namespace squiggles
#endif

View File

@ -0,0 +1,56 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _SQUIGGLES_IO_HPP_
#define _SQUIGGLES_IO_HPP_
#include <optional>
#include <vector>
#include "geometry/profilepoint.hpp"
namespace squiggles {
/**
* Writes the path data to a CSV file.
*
* @param out The output stream to write the CSV data to. This is usually a
* file.
* @param path The path to serialized
*
* @return 0 if the path was serialized succesfully or -1 if an error occurred.
*/
int serialize_path(std::ostream& out, std::vector<ProfilePoint> path);
/**
* Converts CSV data into a path.
*
* @param in The input stream containing the CSV data. This is usually a file.
*
* @return The path specified by the CSV data or std::nullopt if de-serializing
* the path was unsuccessful.
*/
std::optional<std::vector<ProfilePoint>> deserialize_path(std::istream& in);
/**
* Converts CSV data from the Pathfinder library's format to a Squiggles path.
*
* NOTE: this code translates data from Jaci Brunning's Pathfinder library.
* The source for that library can be found at:
* https://github.com/JaciBrunning/Pathfinder/
*
* @param left The input stream containing the left wheels' CSV data. This is
* usually a file.
* @param right The input stream containing the right wheels' CSV data. This is
* usually a file.
*
* @return The path specified by the CSV data or std::nullopt if de-serializing
* the path was unsuccessful.
*/
std::optional<std::vector<ProfilePoint>>
deserialize_pathfinder_path(std::istream& left, std::istream& right);
} // namespace squiggles
#endif

View File

@ -0,0 +1,65 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _MATH_QUINTIC_POLYNOMIAL_HPP_
#define _MATH_QUINTIC_POLYNOMIAL_HPP_
#include <string>
namespace squiggles {
class QuinticPolynomial {
public:
/**
* Defines the polynomial function for a spline in one dimension.
*
* @param s_p The starting position of the curve in meters.
* @param s_v The starting velocity of the curve in meters per second.
* @param s_a The starting acceleration of the curve in meters per second per
* second.
* @param g_p The goal or ending position of the curve in meters.
* @param g_v The goal or ending velocity of the curve in meters per second.
* @param g_a The goal or ending acceleration of the curve in meters per
* second per second.
* @param t The desired duration for the curve in seconds.
*/
QuinticPolynomial(double s_p,
double s_v,
double s_a,
double g_p,
double g_v,
double g_a,
double t);
/**
* Calculates the values of the polynomial and its derivatives at the given
* time stamp.
*/
double calc_point(double t);
double calc_first_derivative(double t);
double calc_second_derivative(double t);
double calc_third_derivative(double t);
/**
* Serializes the Quintic Polynomial data for debugging.
*
* @return The Quintic Polynomial data.
*/
std::string to_string() const {
return "QuinticPolynomial: {0: " + std::to_string(a0) +
" 1: " + std::to_string(a1) + " 2: " + std::to_string(a2) +
" 3: " + std::to_string(a3) + " 4: " + std::to_string(a4) +
" 5: " + std::to_string(a5) + "}";
}
protected:
/**
* The coefficients for each term of the polynomial.
*/
double a0, a1, a2, a3, a4, a5;
};
} // namespace squiggles
#endif

View File

@ -0,0 +1,61 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _MATH_UTILS_HPP_
#define _MATH_UTILS_HPP_
#include <cmath>
#include <iostream>
namespace squiggles {
/**
* Returns the sign value of the given value.
*
* @return 1 if the value is positive, -1 if the value is negative, and 0 if
* the value is 0.
*/
template <class T> inline int sgn(T v) {
return (v > T(0)) - (v < T(0));
}
inline bool
nearly_equal(const double& a, const double& b, double epsilon = 1e-5) {
return std::fabs(a - b) < epsilon;
}
} // namespace squiggles
namespace std {
// Copied from https://github.com/emsr/cxx_linear
template <typename _Float>
constexpr std::enable_if_t<
std::is_floating_point_v<_Float> &&
__cplusplus <= 201703L, // Only defines this function if C++ standard < 20
_Float>
lerp(_Float __a, _Float __b, _Float __t) {
if (std::isnan(__a) || std::isnan(__b) || std::isnan(__t))
return std::numeric_limits<_Float>::quiet_NaN();
else if ((__a <= _Float{0} && __b >= _Float{0}) ||
(__a >= _Float{0} && __b <= _Float{0}))
// ab <= 0 but product could overflow.
#ifndef FMA
return __t * __b + (_Float{1} - __t) * __a;
#else
return std::fma(__t, __b, (_Float{1} - __t) * __a);
#endif
else if (__t == _Float{1})
return __b;
else { // monotonic near t == 1.
#ifndef FMA
const auto __x = __a + __t * (__b - __a);
#else
const auto __x = std::fma(__t, __b - __a, __a);
#endif
return (__t > _Float{1}) == (__b > __a) ? std::max(__b, __x)
: std::min(__b, __x);
}
}
} // namespace std
#endif

View File

@ -0,0 +1,38 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _PHYSICAL_MODEL_PASSTHROUGH_MODEL_HPP_
#define _PHYSICAL_MODEL_PASSTHROUGH_MODEL_HPP_
#include "physicalmodel/physicalmodel.hpp"
namespace squiggles {
class PassthroughModel : public PhysicalModel {
public:
/**
* Defines a Physical Model that imposes no constraints of its own.
*/
PassthroughModel() = default;
Constraints constraints([[maybe_unused]] const Pose pose,
[[maybe_unused]] double curvature,
double vel) override {
return Constraints(vel);
};
std::vector<double>
linear_to_wheel_vels([[maybe_unused]] double lin_vel,
[[maybe_unused]] double curvature) override {
return std::vector<double>{};
}
std::string to_string() const override {
return "PassthroughModel {}";
}
};
} // namespace squiggles
#endif

View File

@ -0,0 +1,43 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _PHYSICAL_MODEL_PHYSICAL_MODEL_HPP_
#define _PHYSICAL_MODEL_PHYSICAL_MODEL_HPP_
#include "constraints.hpp"
#include "geometry/pose.hpp"
namespace squiggles {
class PhysicalModel {
public:
/**
* Calculate a set of stricter constraints for the path at the given state
* than the general constraints based on the robot's kinematics.
*
* @param pose The 2D pose for this state in the path.
* @param curvature The change in heading at this state in the path in 1 /
* meters.
* @param vel The linear velocity at this state in the path in meters per
* second.
*/
virtual Constraints
constraints(const Pose pose, double curvature, double vel) = 0;
/**
* Converts a linear velocity and desired curvature into the component for
* each wheel of the robot.
*
* @param linear The linear velocity for the robot in meters per second.
* @param curvature The change in heading for the robot in 1 / meters.
*/
virtual std::vector<double> linear_to_wheel_vels(double linear,
double curvature) = 0;
virtual std::string to_string() const = 0;
};
} // namespace squiggles
#endif

View File

@ -0,0 +1,45 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _PHYSICAL_MODEL_TANK_MODEL_HPP_
#define _PHYSICAL_MODEL_TANK_MODEL_HPP_
#include <tuple>
#include <vector>
#include "physicalmodel/physicalmodel.hpp"
namespace squiggles {
class TankModel : public PhysicalModel {
public:
/**
* Defines a model of a tank drive or differential drive robot.
*
* @param itrack_width The distance between the the wheels on each side of the
* robot in meters.
* @param ilinear_constraints The maximum values for the robot's movement.
*/
TankModel(double itrack_width, Constraints ilinear_constraints);
Constraints
constraints(const Pose pose, double curvature, double vel) override;
std::vector<double> linear_to_wheel_vels(double lin_vel,
double curvature) override;
std::string to_string() const override;
private:
double vel_constraint(const Pose pose, double curvature, double vel);
std::tuple<double, double>
accel_constraint(const Pose pose, double curvature, double vel) const;
double track_width;
Constraints linear_constraints;
};
} // namespace squiggles
#endif

View File

@ -0,0 +1,310 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _SQUIGGLES_SPLINE_HPP_
#define _SQUIGGLES_SPLINE_HPP_
#include <initializer_list>
#include <memory>
#include <vector>
#include "constraints.hpp"
#include "geometry/controlvector.hpp"
#include "geometry/profilepoint.hpp"
#include "math/quinticpolynomial.hpp"
#include "physicalmodel/passthroughmodel.hpp"
#include "physicalmodel/physicalmodel.hpp"
namespace squiggles {
class SplineGenerator {
public:
/**
* Generates curves that match the given motion constraints.
*
* @param iconstraints The maximum allowable values for the robot's motion.
* @param imodel The robot's physical characteristics and constraints
* @param idt The difference in time in seconds between each state for the
* generated paths.
*/
SplineGenerator(Constraints iconstraints,
std::shared_ptr<PhysicalModel> imodel =
std::make_shared<PassthroughModel>(),
double idt = 0.1);
/**
* Creates a motion profiled path between the given waypoints.
*
* @param iwaypoints The list of poses that the robot should reach along the
* path.
* @param fast If true, the path optimization process will stop as soon as the
* constraints are met. If false, the optimizer will find the
* smoothest possible path between the points.
*
* @return A series of robot states defining a path between the poses.
*/
std::vector<ProfilePoint> generate(std::vector<Pose> iwaypoints,
bool fast = false);
std::vector<ProfilePoint> generate(std::initializer_list<Pose> iwaypoints,
bool fast = false);
/**
* Creates a motion profiled path between the given waypoints.
*
* @param iwaypoints The list of vectors that the robot should reach along the
* path.
*
* @return A series of robot states defining a path between the vectors.
*/
std::vector<ProfilePoint> generate(std::vector<ControlVector> iwaypoints);
std::vector<ProfilePoint>
generate(std::initializer_list<ControlVector> iwaypoints);
protected:
/**
* The maximum allowable values for the robot's motion.
*/
Constraints constraints;
/**
* Defines the physical structure of the robot and translates the linear
* kinematics to wheel velocities.
*/
std::shared_ptr<PhysicalModel> model;
/**
* The time difference between each value in the generated path.
*/
double dt;
/**
* The minimum and maximum durations for a path to take. A larger range allows
* for longer possible paths at the expense of a longer path generation time.
*/
const int T_MIN = 2;
const int T_MAX = 15;
const int MAX_GRAD_DESCENT_ITERATIONS = 10;
/**
* This is factor is used to create a "dummy velocity" in the initial path
* generation step one or both of the preferred start or end velocities is
* zero. The velocity will be replaced with the preferred start/end velocity
* in parameterization but a nonzero velocity is needed for the spline
* calculation.
*
* This was 1.2 in the WPILib example but that large of a value seems to
* create wild paths, 0.12 worked better in testing with VEX-sized paths.
*/
public:
const double K_DEFAULT_VEL = 1.0;
/**
* The output of the initial, "naive" generation step. We discard the
* derivative values to replace them with values from a motion profile.
*/
struct GeneratedPoint {
GeneratedPoint(Pose ipose, double icurvature = 0.0)
: pose(ipose), curvature(icurvature) {}
std::string to_string() const {
return "GeneratedPoint: {" + pose.to_string() +
", curvature: " + std::to_string(curvature) + "}";
}
Pose pose;
double curvature;
};
/**
* An intermediate value used in the "naive" generation step. Contains the
* final GeneratedPoint value that will be returned as well as the spline's
* derivative values to perform the initial check against the constraints.
*/
struct GeneratedVector {
GeneratedVector(GeneratedPoint ipoint,
double ivel,
double iaccel,
double ijerk)
: point(ipoint), vel(ivel), accel(iaccel), jerk(ijerk) {}
GeneratedPoint point;
double vel;
double accel;
double jerk;
std::string to_string() const {
return "GeneratedVector: {" + point.to_string() +
", vel: " + std::to_string(vel) +
", accel: " + std::to_string(accel) +
", jerk: " + std::to_string(jerk) + "}";
}
};
std::vector<GeneratedVector> gen_single_raw_path(ControlVector start,
ControlVector end,
int duration,
double start_vel,
double end_vel);
/**
* Runs a Gradient Descent algorithm to minimize the linear acceleration,
* linear jerk, and curvature for the generated path.
*
* This is used when there is not a start/end velocity specified for a given
* path.
*/
std::vector<GeneratedPoint>
gradient_descent(ControlVector& start, ControlVector& end, bool fast);
/**
* An intermediate value used in the parameterization step. Adds the
* constrained values from the motion profile to the output from the "naive"
* generation step.
*/
struct ConstrainedState {
ConstrainedState(Pose ipose,
double icurvature,
double idistance,
double imax_vel,
double imin_accel,
double imax_accel)
: pose(ipose),
curvature(icurvature),
distance(idistance),
max_vel(imax_vel),
min_accel(imin_accel),
max_accel(imax_accel) {}
ConstrainedState() = default;
Pose pose = Pose();
double curvature = 0;
double distance = 0;
double max_vel = 0;
double min_accel = 0;
double max_accel = 0;
std::string to_string() const {
return "ConstrainedState: {x: " + std::to_string(pose.x) +
", y: " + std::to_string(pose.y) +
", yaw: " + std::to_string(pose.yaw) +
", k: " + std::to_string(curvature) +
", dist: " + std::to_string(distance) +
", v: " + std::to_string(max_vel) +
", min_a: " + std::to_string(min_accel) +
", max_a: " + std::to_string(max_accel) + "}";
}
};
/**
* The actual function called by the "generate" functions.
*
* @param start An iterator pointing to the first ControlVector in the path
* @param end An iterator pointting to the last ControlVector in the path
*
* @return The points from each path concatenated together
*/
template <class Iter>
std::vector<ProfilePoint> _generate(Iter start, Iter end, bool fast);
public:
/**
* Performs the "naive" generation step.
*
* This step calculates the spline polynomials that fit within the
* SplineGenerator's acceleration and jerk constraints and returns the points
* that form the curve.
*/
std::vector<GeneratedPoint>
gen_raw_path(ControlVector& start, ControlVector& end, bool fast);
/**
* Imposes a linear motion profile on the raw path.
*
* This step creates the velocity and acceleration values to command the robot
* at each point along the curve.
*/
std::vector<ProfilePoint>
parameterize(const ControlVector start,
const ControlVector end,
const std::vector<GeneratedPoint>& raw_path,
const double preferred_start_vel,
const double preferred_end_vel,
const double start_time);
/**
* Finds the new timestamps for each point along the curve based on the motion
* profile.
*/
std::vector<ProfilePoint>
integrate_constrained_states(std::vector<ConstrainedState> constrainedStates);
/**
* Finds the ProfilePoint on the profiled curve for the given timestamp.
*
* This with interpolate between points on the curve if a point with an exact
* matching timestamp is not found.
*/
ProfilePoint get_point_at_time(const ControlVector start,
const ControlVector end,
std::vector<ProfilePoint> points,
double t);
/**
* Linearly interpolates between points along the profiled curve.
*/
ProfilePoint lerp_point(QuinticPolynomial x_qp,
QuinticPolynomial y_qp,
ProfilePoint start,
ProfilePoint end,
double i);
/**
* Returns the spline curve for the given control vectors and path duration.
*/
QuinticPolynomial get_x_spline(const ControlVector start,
const ControlVector end,
const double duration);
QuinticPolynomial get_y_spline(const ControlVector start,
const ControlVector end,
const double duration);
/**
* Applies the general constraints and model constraints to the given state.
*/
void enforce_accel_lims(ConstrainedState* state);
/**
* Imposes the motion profile constraints on a segment of the path from the
* perspective of iterating forwards through the path.
*/
void forward_pass(ConstrainedState* predecessor, ConstrainedState* successor);
/**
* Imposes the motion profile constraints on a segment of the path from the
* perspective of iterating backwards through the path.
*/
void backward_pass(ConstrainedState* predecessor,
ConstrainedState* successor);
/**
* Calculates the final velocity for a path segment.
*/
double vf(double vi, double a, double ds);
/**
* Calculates the initial acceleration needed to match the segments'
* velocities.
*/
double ai(double vf, double vi, double s);
/**
* Values that are closer to each other than this value are considered equal.
*/
static constexpr double K_EPSILON = 1e-5;
};
} // namespace squiggles
#endif

View File

@ -0,0 +1,22 @@
/**
* Copyright 2020 Jonathan Bayless
*
* Use of this source code is governed by an MIT-style license that can be found
* in the LICENSE file or at https://opensource.org/licenses/MIT.
*/
#ifndef _ROBOT_SQUIGGLES_H_
#define _ROBOT_SQUIGGLES_H_
#include "geometry/controlvector.hpp"
#include "geometry/pose.hpp"
#include "geometry/profilepoint.hpp"
#include "physicalmodel/passthroughmodel.hpp"
#include "physicalmodel/physicalmodel.hpp"
#include "physicalmodel/tankmodel.hpp"
#include "constraints.hpp"
#include "io.hpp"
#include "spline.hpp"
#endif