Merge branch 'modulus-plus-dev'

This commit is contained in:
evlryah 2023-10-05 14:04:17 -05:00
commit d1e03616c5
5 changed files with 152 additions and 37 deletions

View File

@ -25,7 +25,8 @@ extern long last_p;
#define max(x,y) ( (x) > (y) ? (x) : (y) )
#define min(x,y) ( (x) < (y) ? (x) : (y) )
#define MOTOR_MAX_POWER 127.0 // Highest value accepted by motor control functions
#define MOTOR_MAX_POWER 127.0 // Highest value accepted by motor control functions
#define DRIVE_MOTOR_MAX_POWER 64.0 // Maximum power for drive motors
// Drive modes
#define DRIVE_STOP 0
@ -55,8 +56,9 @@ extern long last_p;
// Length of the buffer to monitor recent steering encoder positions to calculate speed
// The buffer will track the last N states of the encoders, and the times at which they were recorded, to determine the steering motors' current speeds
// This value must always be at least 2, otherwise the code will break due to there being an array with a zero or negative length or a division by zero
#define ENCODER_BUFFER_ENTRY_COUNT 5
#define ENCODER_BUFFER_ENTRY_COUNT 3
<<<<<<< HEAD
// Number of encoder ticks per full rotation of each swerve drive steering motor
#define STEERING_ENCODER_TICKS_PER_ROTATION (1024.0 * 8.0)
@ -68,6 +70,20 @@ extern long last_p;
// Start decelerating the steering motors linearly when they're within this many degrees of their target angle
#define STEERING_SLOW_DELTA 30.0
=======
// Steering parameters
#define STEERING_ENCODER_TICKS_PER_ROTATION (1024.0 * 8.0) // Number of encoder ticks per full rotation of each swerve drive steering motor
#define STEERING_ENCODER_TICKS_PER_DEGREE (STEERING_ENCODER_TICKS_PER_ROTATION / 360.0) // Number of encoder ticks per degree of rotation for the swerve drive steering motors
#define STEERING_MOTOR_SPEED_LIMIT 80.0 // Maximum speed allowed for the steering motors (out of 127.0)
// Steering PID parameters
#define STEERING_SLOW_DELTA 35.0 // Start decelerating the steering motors linearly when they're within this many degrees of their target angle
#define STEERING_ACCEL_SLOW_DELAY 0.20 // Estimated acceleration delay of steering motors at low speeds (seconds)
#define STEERING_TOLERANCE 1.0 // Steering tolerance in degrees
#define STEERING_STALL_DETECT_ANGULAR_SPEED 5.0 // Detect steering motor stall if measured angular speed is below this
#define STEERING_SLOW_APPROACH_SPEED (0.16 * (MOTOR_MAX_POWER / STEERING_MOTOR_SPEED_LIMIT)) // Slow approach speed for steering motors
#define STEERING_TOLERANCE_DISABLE_DRIVE 30.0 // Disable the drive motors if any steering motor is off-target by more than this many degrees
#define STEERING_HOVER_RANGE 10.0 // Angular range where steering motors tend to hover around their targets
>>>>>>> modulus-plus-dev
// Claw status
#define CLAW_UNKNOWN 1 // Position unknown

View File

@ -44,8 +44,13 @@ PCF8574 ioex2(0x21, 20, 21);
// JANK: soldered to pico or headers
PioEncoder enc1(18); // Front Left
<<<<<<< HEAD
PioEncoder enc2(0); // Front Right // TODO WIRING AND CONFIRMATION 20230929
PioEncoder enc3(27); // Back Left // TODO WIRING AND CONFIRMATION 20230929
=======
PioEncoder enc2(0); // Front Right
PioEncoder enc3(2); // Back Left
>>>>>>> modulus-plus-dev
PioEncoder enc4(14); // Back Right
@ -103,8 +108,8 @@ Sabertooth actuators(130, Serial2);
#define TALON_PIN_3 7
#define TALON_PIN_4 9
// pins for arm servos
#define ARM_SERVO_PIN_1 2
#define ARM_SERVO_PIN_2 3
#define ARM_SERVO_PIN_1 26
#define ARM_SERVO_PIN_2 27
#define ARM_SERVO_PIN_3 8
static _107_::Servo talon1, talon2, talon3, talon4, arm1, arm2, arm3;
@ -407,10 +412,13 @@ void set_motor(byte motor, int speed) {
// 14 : drive 11-13 with identical position & speed
// 15 - 17 : arm servos
// speed is -127 to 127
Serial.print("Driving motor ");
Serial.print(motor);
Serial.print(" with speed ");
Serial.println(speed);
if (motor <= 4) {
// swerve controls
speed *= (((motor % 2) * 2) - 1); // Flip motors 2 and 4
@ -434,7 +442,8 @@ void set_motor(byte motor, int speed) {
//stepperX.setSpeed((float)speed);
if (abs(speed) > 0)
ioex1.digitalWrite(2, LOW); // enable
else
stepperX_pos = stepperX.currentPosition();
stepperX.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed);
stepperX_pos = speed * 96 + stepperX.currentPosition();
@ -446,7 +455,8 @@ void set_motor(byte motor, int speed) {
//stepperY.setSpeed((float)speed);
if (abs(speed) > 0)
ioex1.digitalWrite(2, LOW); // enable
else
stepperY_pos = stepperY.currentPosition();
stepperY.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed);
stepperY_pos = speed * 96 + stepperY.currentPosition();
@ -458,6 +468,8 @@ void set_motor(byte motor, int speed) {
//stepperY.setSpeed((float)speed);
if (abs(speed) > 0)
ioex1.digitalWrite(2, LOW); // enable
else
stepperZ_pos = stepperZ.currentPosition();
stepperZ.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed);
stepperZ_pos = speed * 96 + stepperZ.currentPosition();
@ -472,21 +484,34 @@ void set_motor(byte motor, int speed) {
stepperX.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed);
stepperX.moveTo(stepperX_pos);
stepperY.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed);
stepperY.moveTo(stepperX_pos);
//stepperY.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed);
//stepperY.moveTo(stepperX_pos);
stepperZ.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed);
stepperZ.moveTo(stepperX_pos);
stepperX.runState();
stepperY.runState();
//stepperY.runState();
stepperZ.runState();
} else {
ioex1.digitalWrite(2, HIGH); // disable
// stepperX_pos = stepperX.currentPosition();
stepperX.setCurrentPosition(stepperX_pos);
//stepperY.setCurrentPosition(stepperX_pos);
stepperZ.setCurrentPosition(stepperX_pos);
//stepperX.stop();
//stepperY.stop();
//stepperZ.stop();
}
}
else if (motor == 15)
arm1.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET));
else if (motor == 16)
arm1.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET));
arm2.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET));
else if (motor == 17)
arm1.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET));
}
@ -589,19 +614,11 @@ void setup() {
ioex1.digitalWrite(3, HIGH);
delay(2000);
digitalWrite(ALI1, LOW);
digitalWrite(BLI1, LOW);
digitalWrite(AHI1, LOW);
digitalWrite(BHI1, LOW);
digitalWrite(ALI2, LOW);
digitalWrite(BLI2, LOW);
digitalWrite(AHI2, LOW);
digitalWrite(BHI2, LOW);
pinMode(ALI1, OUTPUT);
pinMode(AHI1, OUTPUT);
pinMode(BLI1, OUTPUT);
pinMode(BHI1, OUTPUT);
pinMode(ALI2, OUTPUT);
pinMode(AHI2, OUTPUT);
pinMode(BLI2, OUTPUT);
@ -694,7 +711,9 @@ void setup() {
enc1.begin();
//enc1.flip();
enc2.begin();
//enc2.flip();
enc3.begin();
//enc3.flip();
enc4.begin();
Serial.println(" done");
delay(20);
@ -971,13 +990,24 @@ void loop() {
swrv = updateEncoderData(swrv, enc1.getCount(), enc2.getCount(), enc3.getCount(), enc4.getCount()); // Update encoder data in the swerve_drive struct
swrv = updateSwerveCommand(swrv); // Calculate power for each drive and steering motor
//DEBUG TESTING code:
Serial.printf("FL spin target %f \t\t at %f\r\n", swrv.front_left_target_spin, normalizeAngle(swrv.front_right_spin_angle));
Serial.printf("FR spin target %f \t\t at %f\r\n", swrv.front_right_target_spin, normalizeAngle(swrv.front_right_spin_angle));
Serial.printf("BL spin target %f \t\t at %f\r\n", swrv.back_left_target_spin, normalizeAngle(swrv.back_left_spin_angle));
Serial.printf("BR spin target %f \t\t at %f\r\n", swrv.back_right_target_spin, normalizeAngle(swrv.back_right_spin_angle));
// Arm motor control (stepper motors), DPAD_UP to move arm up, DPAD_DOWN to move arm down, both or neither being pressed stops the arm
float arm_speed = (float) (((int) getButton(DPAD_UP)) - ((int) getButton(DPAD_DOWN))); // TODO 20230929 confirm speed and polarity
clawarm = setArmSpeed(clawarm, arm_speed);
// Claw servo control
int new_claw_command = CLAW_COMMAND_UNSET;
<<<<<<< HEAD
int claw_direction = getButton(CLAW_OPEN_BUTTON) - getButton(CLAW_CLOSE_BUTTON);
=======
int claw_direction = ((int) getButton(CLAW_OPEN_BUTTON)) - ((int) getButton(CLAW_CLOSE_BUTTON));
>>>>>>> modulus-plus-dev
switch(claw_direction) {
case 0:
new_claw_command = CLAW_COMMAND_STAY;
@ -995,7 +1025,13 @@ void loop() {
int new_tilt_command = TILT_COMMAND_UNSET;
clawarm = updateTiltCommand(clawarm, new_tilt_command);
<<<<<<< HEAD
telemetry(zeroed_lx_float, zeroed_ly_float, zeroed_rx_float, zeroed_ry_float, loop_drive_mode, left_joystick_angle, left_joystick_magnitude, right_joystick_angle, right_joystick_magnitude, previous_loop_processing_duration_core_0); // DEBUG ONLY, telemetry
=======
telemetry(zeroed_lx_float, zeroed_ly_float, zeroed_rx_float, zeroed_ry_float, loop_drive_mode, left_joystick_angle, left_joystick_magnitude, right_joystick_angle, right_joystick_magnitude, previous_loop_processing_duration_core_0); // DEBUG ONLY, telemetry
>>>>>>> modulus-plus-dev
// update motors after calculation
set_motor(FLDRIVE, swrv.front_left_power);
@ -1003,6 +1039,16 @@ void loop() {
set_motor(FRDRIVE, swrv.front_right_power);
set_motor(BLDRIVE, swrv.back_left_power);
// Lock the spinlock and transfer the steering motor data to core 1, which will send the data to the sabertooth motor controllers
spinlock_lock_core_0(&drive_power_command_spinlock_flag);
power_data_transfer_fl = swrv.front_left_spin_power;
power_data_transfer_fr = swrv.front_right_spin_power;
power_data_transfer_bl = swrv.back_left_spin_power;
power_data_transfer_br = swrv.back_right_spin_power;
spinlock_release(&drive_power_command_spinlock_flag);
// Lock the spinlock and transfer the steering motor data to core 1, which will send the data to the sabertooth motor controllers
spinlock_lock_core_0(&drive_power_command_spinlock_flag);
power_data_transfer_fl = swrv.front_left_power;
@ -1012,9 +1058,13 @@ void loop() {
spinlock_release(&drive_power_command_spinlock_flag);
// update stepper motors
// TESTING: comment out this code to check performance impact
set_motor(LIFTALL, clawarm.arm_set_motor_int);
// update servos
Serial.printf("claw set motor int %i\r\n", clawarm.claw_set_motor_int);
set_motor(ARMSERVO1, clawarm.claw_set_motor_int);
set_motor(ARMSERVO2, - clawarm.claw_set_motor_int);
/*
// TODO: Figure out servo mapping
set_motor(SERVOTILT, clawarm.tilt_set_motor_int);
@ -1043,6 +1093,7 @@ void drive_control_core_1() { // Control drive motors from core 1 from loop1() f
spinlock_release(&drive_power_command_spinlock_flag); // Release the spinlock
// Set motors if the requested power is different than the previously requested power
<<<<<<< HEAD
if(local_fl != power_data_transfer_prev_fl) {
set_motor(FLSTEER, local_fl);
}
@ -1055,6 +1106,20 @@ void drive_control_core_1() { // Control drive motors from core 1 from loop1() f
if(local_br != power_data_transfer_prev_br) {
set_motor(BRSTEER, local_br);
}
=======
//if(local_fl != power_data_transfer_prev_fl) {
set_motor(FLSTEER, local_fl);
//}
//if(local_fr != power_data_transfer_prev_fr) {
set_motor(FRSTEER, local_fr);
//}
//if(local_bl != power_data_transfer_prev_bl) {
set_motor(BLSTEER, local_bl);
//}
//if(local_br != power_data_transfer_prev_br) {
set_motor(BRSTEER, local_br);
//}
>>>>>>> modulus-plus-dev
// Set the previously requested power data to the current power data, will be read in the next loop
power_data_transfer_prev_fl = local_fl;

View File

@ -106,7 +106,7 @@ manipulator_arm setArmSpeed(manipulator_arm input, float arm_speed) // Set the a
manipulator_arm out = input;
arm_speed = out.arm_speed_coefficient * min(out.arm_speed_limit, max(-out.arm_speed_limit, arm_speed));
out.arm_speed = arm_speed;
out.arm_set_motor_int = min(127, max(-127, (int) (127.0f * arm_speed)));
out.arm_set_motor_int = min(127, max(-127, (int) (127.0f * arm_speed))) * 2;
return out;
}
manipulator_arm setArmSpeedLimit(manipulator_arm input, float arm_speed_limit) // Set the arm's speed limit (applied before coefficient), limit must be between 0.0 and 1.0

View File

@ -54,18 +54,33 @@ swerve_drive initializeSwerveDrive(int front_left_encoder, int front_right_encod
swerve_drive updateSwerveCommand(swerve_drive input)
{
swerve_drive out = input;
float new_drive_coefficient = out.target_drive_power;
// Set the new speed of the steering motors
if((out.target_drive_power != 0.0f || out.current_drive_power != 0.0f) && out.enable_steering) { // Only set the steering power if the robot is trying to move, and if steering is enabled
if(/*(out.target_drive_power != 0.0f || out.current_drive_power != 0.0f) &&*/ out.enable_steering) { // Only set the steering power if the robot is trying to move, and if steering is enabled
// Calculate the distance and direction each motor needs to steer from where it is now
float front_left_delta = closestAngle(out.front_left_spin_angle, out.front_left_target_spin);
float front_right_delta = closestAngle(out.front_right_spin_angle, out.front_right_target_spin);
float back_left_delta = closestAngle(out.back_left_spin_angle, out.back_left_target_spin);
float back_right_delta = closestAngle(out.back_right_spin_angle, out.back_right_target_spin);
out.front_left_spin_power = calculateSteeringMotorSpeed(front_left_delta);
out.front_right_spin_power = calculateSteeringMotorSpeed(front_right_delta);
out.back_left_spin_power = calculateSteeringMotorSpeed(back_left_delta);
out.back_right_spin_power = calculateSteeringMotorSpeed(back_right_delta);
// Use the delta and speed of each steering motor to calculate the necessary speed
out.front_left_spin_power = calculateSteeringMotorSpeed(front_left_delta, out.front_left_measured_spin_speed);
out.front_right_spin_power = calculateSteeringMotorSpeed(front_right_delta, out.front_right_measured_spin_speed);
out.back_left_spin_power = calculateSteeringMotorSpeed(back_left_delta, out.back_left_measured_spin_speed);
out.back_right_spin_power = calculateSteeringMotorSpeed(back_right_delta, out.back_right_measured_spin_speed);
float max_abs_steering_delta = max(max(fabs(front_left_delta), fabs(front_right_delta)), max(fabs(back_left_delta), fabs(back_right_delta)));
if (max_abs_steering_delta > STEERING_TOLERANCE_DISABLE_DRIVE) {
new_drive_coefficient = 0;
}
Serial.printf("max_abs_steering_delta = %f\t\tndc = %f\r\n", max_abs_steering_delta, new_drive_coefficient);
// TESTING DEBUG print 20230929
Serial.printf("FL delta = %f\t\tFL steer = %f\r\n", front_left_delta, out.front_left_spin_power);
Serial.printf("FR delta = %f\t\tFR steer = %f\r\n", front_right_delta, out.front_right_spin_power);
Serial.printf("BL delta = %f\t\tBL steer = %f\r\n", back_left_delta, out.back_left_spin_power);
Serial.printf("BR delta = %f\t\tBR steer = %f\r\n", back_right_delta, out.back_right_spin_power);
} else { // Stop the steering motors if the robot is stopped and not trying to move, or if steering is disabled
out.front_left_spin_power = 0.0f;
out.front_right_spin_power = 0.0f;
@ -74,24 +89,43 @@ swerve_drive updateSwerveCommand(swerve_drive input)
}
// Set the current drive power to the target drive power, TODO: this is TEMPORARY, add in something to slow the current (set) speed until the wheels are in the correct direction
out.current_drive_power = out.target_drive_power;
//out.current_drive_power = out.target_drive_power;
// Set the new drive motor power, apply coefficients, set between -127.0 and 127.0
out.front_left_power = out.current_drive_power * out.front_left_coefficient * MOTOR_MAX_POWER;
out.front_right_power = out.current_drive_power * out.front_right_coefficient * MOTOR_MAX_POWER;
out.back_left_power = out.current_drive_power * out.back_left_coefficient * MOTOR_MAX_POWER;
out.back_right_power = out.current_drive_power * out.back_right_coefficient * MOTOR_MAX_POWER;
out.current_drive_power = new_drive_coefficient;
out.front_left_power = new_drive_coefficient * out.front_left_coefficient * DRIVE_MOTOR_MAX_POWER;
out.front_right_power = new_drive_coefficient * out.front_right_coefficient * DRIVE_MOTOR_MAX_POWER;
out.back_left_power = new_drive_coefficient * out.back_left_coefficient * DRIVE_MOTOR_MAX_POWER;
out.back_right_power = new_drive_coefficient * out.back_right_coefficient * DRIVE_MOTOR_MAX_POWER;
return out;
}
float calculateSteeringMotorSpeed(float steering_delta) // Calculate the speed of a steering motor based on its distance from its target angle
float calculateSteeringMotorSpeed(float steering_delta, float current_angular_speed) // Calculate the speed of a steering motor based on its distance from its target angle and its current angular speed
{
float abs_steering_delta = fabs(steering_delta);
if(abs_steering_delta > STEERING_SLOW_DELTA) { // In full speed range, still far enough away from the target angle
return STEERING_MOTOR_SPEED_LIMIT;
if(abs_steering_delta > STEERING_SLOW_DELTA && abs_steering_delta > STEERING_TOLERANCE) { // In full speed range, still far enough away from the target angle
return STEERING_MOTOR_SPEED_LIMIT * (steering_delta < 0.0f ? -1.0f : 1.0f);
} else { // Slow down the speed of the steering motor since it's close to its target angle
return STEERING_MOTOR_SPEED_LIMIT * (1.0f - (abs_steering_delta / STEERING_SLOW_DELTA));
float calc_steering_delta = steering_delta + (STEERING_ACCEL_SLOW_DELAY * current_angular_speed); // Modify the steering delta to the estimated delta in STEERING_ACCEL_SLOW_DELAY seconds to account for motor acceleration
float calc_steering_limit_signed = STEERING_MOTOR_SPEED_LIMIT * (calc_steering_delta < 0.0f ? -1.0f : 1.0f); // Update the sign to account for the future location estimation above
float calc_abs_steering_delta = fabs(calc_steering_delta); // Update abs_steering_delta with the new steering_delta
float steering_speed_fraction = powf(calc_abs_steering_delta / STEERING_SLOW_DELTA, 2.0f); // Fraction of full speed being used
//return steering_limit_signed * (1.0f - (abs_steering_delta / STEERING_SLOW_DELTA));
if(current_angular_speed < STEERING_STALL_DETECT_ANGULAR_SPEED || steering_speed_fraction < STEERING_SLOW_APPROACH_SPEED) { // Detect motor stall during approach and increase speed to allow for approach
steering_speed_fraction = STEERING_SLOW_APPROACH_SPEED;
if(calc_abs_steering_delta < STEERING_HOVER_RANGE) { // Decrease speed further if the steering is extremely close to the target
steering_speed_fraction *= (calc_abs_steering_delta / STEERING_HOVER_RANGE);
} else if(abs_steering_delta < STEERING_HOVER_RANGE) {
steering_speed_fraction *= (abs_steering_delta / STEERING_HOVER_RANGE);
}
}
if(calc_abs_steering_delta < STEERING_TOLERANCE) { // Stop the steering motors if they are within the tolerance range
return 0.0f;
}
return calc_steering_limit_signed * steering_speed_fraction; // Apply the direction
}
}
@ -234,7 +268,7 @@ swerve_drive rotationDrive(swerve_drive input, float target_speed) // Implementa
//float normalized_target_angle = normalizeAngle(target_angle); // Normalize the target angle
out = setTargetSpin(out, 45.0, 135.0, 225.0, 315.0); // Set the target angle for each rotation motor
out = setTargetSpin(out, 45.0, 135.0, 315.0, 225.0); // Set the target angle for each rotation motor
out = setMotorCoefficients(out, 1.0, 1.0, 1.0, 1.0); // Set the motor speed coefficients to 1 for all motors
out = setDriveTargetPower(out, target_speed); // Set the power

View File

@ -81,7 +81,7 @@ swerve_drive initializeSwerveDrive(int front_left_encoder, int front_right_encod
swerve_drive updateSwerveCommand(swerve_drive input); // This function calculates the robot's current speed and attempts to modify the current state of the drive towards the target drive state
float calculateSteeringMotorSpeed(float steering_delta); // Calculate the speed of a steering motor based on its distance from its target angle
float calculateSteeringMotorSpeed(float steering_delta, float current_angular_speed); // Calculate the speed of a steering motor based on its distance from its target angle and its current angular speed
swerve_drive updateEncoderData(swerve_drive in, int front_left_encoder, int front_right_encoder, int back_left_encoder, int back_right_encoder); // Process new encoder data, calculate the speed and angle of the steering motors