NIU Competition code final 20230930
This commit is contained in:
		| @@ -25,7 +25,8 @@ extern long last_p; | |||||||
| #define max(x,y) ( (x) > (y) ? (x) : (y) ) | #define max(x,y) ( (x) > (y) ? (x) : (y) ) | ||||||
| #define min(x,y) ( (x) < (y) ? (x) : (y) ) | #define min(x,y) ( (x) < (y) ? (x) : (y) ) | ||||||
|  |  | ||||||
| #define MOTOR_MAX_POWER 127.0 // Highest value accepted by motor control functions | #define MOTOR_MAX_POWER         127.0   // Highest value accepted by motor control functions | ||||||
|  | #define DRIVE_MOTOR_MAX_POWER   64.0    // Maximum power for drive motors  | ||||||
|  |  | ||||||
| // Drive modes | // Drive modes | ||||||
| #define DRIVE_STOP          0 | #define DRIVE_STOP          0 | ||||||
| @@ -55,20 +56,20 @@ extern long last_p; | |||||||
| // Length of the buffer to monitor recent steering encoder positions to calculate speed | // Length of the buffer to monitor recent steering encoder positions to calculate speed | ||||||
| // The buffer will track the last N states of the encoders, and the times at which they were recorded, to determine the steering motors' current speeds | // The buffer will track the last N states of the encoders, and the times at which they were recorded, to determine the steering motors' current speeds | ||||||
| // This value must always be at least 2, otherwise the code will break due to there being an array with a zero or negative length or a division by zero | // This value must always be at least 2, otherwise the code will break due to there being an array with a zero or negative length or a division by zero | ||||||
| #define ENCODER_BUFFER_ENTRY_COUNT 5 | #define ENCODER_BUFFER_ENTRY_COUNT 3 | ||||||
|  |  | ||||||
| // Steering parameters | // Steering parameters | ||||||
| #define STEERING_ENCODER_TICKS_PER_ROTATION     (1024.0 * 8.0)                                  // Number of encoder ticks per full rotation of each swerve drive steering motor | #define STEERING_ENCODER_TICKS_PER_ROTATION     (1024.0 * 8.0)                                  // Number of encoder ticks per full rotation of each swerve drive steering motor | ||||||
| #define STEERING_ENCODER_TICKS_PER_DEGREE       (STEERING_ENCODER_TICKS_PER_ROTATION / 360.0)   // Number of encoder ticks per degree of rotation for the swerve drive steering motors | #define STEERING_ENCODER_TICKS_PER_DEGREE       (STEERING_ENCODER_TICKS_PER_ROTATION / 360.0)   // Number of encoder ticks per degree of rotation for the swerve drive steering motors | ||||||
| #define STEERING_MOTOR_SPEED_LIMIT 60.0                                                         // Maximum speed allowed for the steering motors (out of 127.0) | #define STEERING_MOTOR_SPEED_LIMIT 80.0                                                         // Maximum speed allowed for the steering motors (out of 127.0) | ||||||
| // Steering PID parameters | // Steering PID parameters | ||||||
| #define STEERING_SLOW_DELTA 35.0                                                                // Start decelerating the steering motors linearly when they're within this many degrees of their target angle | #define STEERING_SLOW_DELTA 35.0                                                                // Start decelerating the steering motors linearly when they're within this many degrees of their target angle | ||||||
| #define STEERING_ACCEL_SLOW_DELAY 0.20                                                          // Estimated acceleration delay of steering motors at low speeds (seconds) | #define STEERING_ACCEL_SLOW_DELAY 0.20                                                          // Estimated acceleration delay of steering motors at low speeds (seconds) | ||||||
| #define STEERING_TOLERANCE 0.5                                                                  // Steering tolerance in degrees | #define STEERING_TOLERANCE 1.0                                                                  // Steering tolerance in degrees | ||||||
| #define STEERING_STALL_DETECT_ANGULAR_SPEED 5.0                                                 // Detect steering motor stall if measured angular speed is below this | #define STEERING_STALL_DETECT_ANGULAR_SPEED 5.0                                                 // Detect steering motor stall if measured angular speed is below this | ||||||
| #define STEERING_SLOW_APPROACH_SPEED 0.12                                                       // Slow approach speed for steering motors | #define STEERING_SLOW_APPROACH_SPEED (0.16 * (MOTOR_MAX_POWER / STEERING_MOTOR_SPEED_LIMIT))    // Slow approach speed for steering motors | ||||||
| #define STEERING_TOLERANCE_DISABLE_DRIVE 2.0                                                    // Disable the drive motors if any steering motor is off-target by more than this many degrees | #define STEERING_TOLERANCE_DISABLE_DRIVE 30.0                                                    // Disable the drive motors if any steering motor is off-target by more than this many degrees | ||||||
|  | #define STEERING_HOVER_RANGE 10.0                                                               // Angular range where steering motors tend to hover around their targets | ||||||
|  |  | ||||||
| // Claw status | // Claw status | ||||||
| #define CLAW_UNKNOWN        1   // Position unknown | #define CLAW_UNKNOWN        1   // Position unknown | ||||||
|   | |||||||
							
								
								
									
										56
									
								
								src/main.cpp
									
									
									
									
									
								
							
							
						
						
									
										56
									
								
								src/main.cpp
									
									
									
									
									
								
							| @@ -408,13 +408,11 @@ void set_motor(byte motor, int speed) { | |||||||
|   // 15 - 17 : arm servos |   // 15 - 17 : arm servos | ||||||
|   // speed is -127 to 127 |   // speed is -127 to 127 | ||||||
|    |    | ||||||
|   // TESTING DEBUG : commented out for testing |  | ||||||
|   /* |  | ||||||
|   Serial.print("Driving motor "); |   Serial.print("Driving motor "); | ||||||
|   Serial.print(motor); |   Serial.print(motor); | ||||||
|   Serial.print(" with speed "); |   Serial.print(" with speed "); | ||||||
|   Serial.println(speed); |   Serial.println(speed); | ||||||
|   */ |    | ||||||
|  |  | ||||||
|   if (motor <= 4) { |   if (motor <= 4) { | ||||||
|     // swerve controls |     // swerve controls | ||||||
| @@ -476,45 +474,27 @@ void set_motor(byte motor, int speed) { | |||||||
|   } |   } | ||||||
|   else if (motor == 14) { // all steppers together |   else if (motor == 14) { // all steppers together | ||||||
|     if (abs(speed) > 0) { |     if (abs(speed) > 0) { | ||||||
|  |  | ||||||
|       Serial.printf("DEBUG 1F1A: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|       ioex1.digitalWrite(2, LOW); // enable |       ioex1.digitalWrite(2, LOW); // enable | ||||||
|       stepperX_pos = speed * 96 + stepperX.currentPosition(); |       stepperX_pos = speed * 96 + stepperX.currentPosition(); | ||||||
|  |  | ||||||
|       Serial.printf("DEBUG 1F1B: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|       stepperX.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); |       stepperX.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); | ||||||
|       stepperX.moveTo(stepperX_pos); |       stepperX.moveTo(stepperX_pos); | ||||||
|       stepperY.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); |       //stepperY.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); | ||||||
|       stepperY.moveTo(stepperX_pos); |       //stepperY.moveTo(stepperX_pos); | ||||||
|       //stepperZ.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); |       stepperZ.setMaxSpeed(abs(speed) / 127.0 * defMaxSpeed); | ||||||
|       //stepperZ.moveTo(stepperX_pos); |       stepperZ.moveTo(stepperX_pos); | ||||||
|  |  | ||||||
|       Serial.printf("DEBUG 1F1C: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|       stepperX.runState(); |       stepperX.runState(); | ||||||
|       stepperY.runState(); |       //stepperY.runState(); | ||||||
|       //stepperZ.runState(); |       stepperZ.runState(); | ||||||
|  |  | ||||||
|       Serial.printf("DEBUG 1F1D: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|     } else { |     } else { | ||||||
|       Serial.printf("DEBUG 1F2A: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|       ioex1.digitalWrite(2, HIGH); // disable |       ioex1.digitalWrite(2, HIGH); // disable | ||||||
|  |  | ||||||
|       Serial.printf("DEBUG 1F2B: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|       // stepperX_pos = stepperX.currentPosition(); |       // stepperX_pos = stepperX.currentPosition(); | ||||||
|  |  | ||||||
|       Serial.printf("DEBUG 1F2C: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|       stepperX.setCurrentPosition(stepperX_pos); |       stepperX.setCurrentPosition(stepperX_pos); | ||||||
|       stepperY.setCurrentPosition(stepperX_pos); |       //stepperY.setCurrentPosition(stepperX_pos); | ||||||
|       //stepperZ.setCurrentPosition(stepperX_pos); |       stepperZ.setCurrentPosition(stepperX_pos); | ||||||
|  |  | ||||||
|       Serial.printf("DEBUG 1F2D: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|       //stepperX.stop(); |       //stepperX.stop(); | ||||||
|       //stepperY.stop(); |       //stepperY.stop(); | ||||||
| @@ -526,7 +506,7 @@ void set_motor(byte motor, int speed) { | |||||||
|   else if (motor == 15) |   else if (motor == 15) | ||||||
|     arm1.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET)); |     arm1.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET)); | ||||||
|   else if (motor == 16) |   else if (motor == 16) | ||||||
|     arm1.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET)); |     arm2.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET)); | ||||||
|   else if (motor == 17) |   else if (motor == 17) | ||||||
|     arm1.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET)); |     arm1.writeMicroseconds(map(speed, -127, 127, MIN_MICROS - OC_OFFSET, MAX_MICROS - OC_OFFSET)); | ||||||
| } | } | ||||||
| @@ -1005,7 +985,6 @@ void loop() { | |||||||
|   swrv = updateEncoderData(swrv, enc1.getCount(), enc2.getCount(), enc3.getCount(), enc4.getCount()); // Update encoder data in the swerve_drive struct |   swrv = updateEncoderData(swrv, enc1.getCount(), enc2.getCount(), enc3.getCount(), enc4.getCount()); // Update encoder data in the swerve_drive struct | ||||||
|   swrv = updateSwerveCommand(swrv); // Calculate power for each drive and steering motor |   swrv = updateSwerveCommand(swrv); // Calculate power for each drive and steering motor | ||||||
|  |  | ||||||
|   Serial.printf("DEBUG 1A: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|   //DEBUG TESTING code: |   //DEBUG TESTING code: | ||||||
|   Serial.printf("FL spin target %f \t\t at %f\r\n", swrv.front_left_target_spin, normalizeAngle(swrv.front_right_spin_angle)); |   Serial.printf("FL spin target %f \t\t at %f\r\n", swrv.front_left_target_spin, normalizeAngle(swrv.front_right_spin_angle)); | ||||||
| @@ -1019,7 +998,7 @@ void loop() { | |||||||
|  |  | ||||||
|   // Claw servo control |   // Claw servo control | ||||||
|   int new_claw_command = CLAW_COMMAND_UNSET; |   int new_claw_command = CLAW_COMMAND_UNSET; | ||||||
|   int claw_direction = getButton(CLAW_OPEN_BUTTON) - getButton(CLAW_CLOSE_BUTTON); |   int claw_direction = ((int) getButton(CLAW_OPEN_BUTTON)) - ((int) getButton(CLAW_CLOSE_BUTTON)); | ||||||
|   switch(claw_direction) { |   switch(claw_direction) { | ||||||
|     case 0: |     case 0: | ||||||
|       new_claw_command = CLAW_COMMAND_STAY; |       new_claw_command = CLAW_COMMAND_STAY; | ||||||
| @@ -1037,11 +1016,9 @@ void loop() { | |||||||
|   int new_tilt_command = TILT_COMMAND_UNSET; |   int new_tilt_command = TILT_COMMAND_UNSET; | ||||||
|   clawarm = updateTiltCommand(clawarm, new_tilt_command); |   clawarm = updateTiltCommand(clawarm, new_tilt_command); | ||||||
|  |  | ||||||
|   Serial.printf("DEBUG 1B: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|   telemetry(zeroed_lx_float, zeroed_ly_float, zeroed_rx_float, zeroed_ry_float, loop_drive_mode, left_joystick_angle, left_joystick_magnitude, right_joystick_angle, right_joystick_magnitude, previous_loop_processing_duration_core_0); // DEBUG ONLY, telemetry |   telemetry(zeroed_lx_float, zeroed_ly_float, zeroed_rx_float, zeroed_ry_float, loop_drive_mode, left_joystick_angle, left_joystick_magnitude, right_joystick_angle, right_joystick_magnitude, previous_loop_processing_duration_core_0); // DEBUG ONLY, telemetry | ||||||
|  |  | ||||||
|   Serial.printf("DEBUG 1C: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|   // update motors after calculation |   // update motors after calculation | ||||||
|   set_motor(FLDRIVE, swrv.front_left_power); |   set_motor(FLDRIVE, swrv.front_left_power); | ||||||
| @@ -1050,28 +1027,23 @@ void loop() { | |||||||
|   set_motor(BLDRIVE, swrv.back_left_power); |   set_motor(BLDRIVE, swrv.back_left_power); | ||||||
|    |    | ||||||
|  |  | ||||||
|   Serial.printf("DEBUG 1D: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|   // Lock the spinlock and transfer the steering motor data to core 1, which will send the data to the sabertooth motor controllers |   // Lock the spinlock and transfer the steering motor data to core 1, which will send the data to the sabertooth motor controllers | ||||||
|   spinlock_lock_core_0(&drive_power_command_spinlock_flag); |   spinlock_lock_core_0(&drive_power_command_spinlock_flag); | ||||||
|  |  | ||||||
|   Serial.printf("DEBUG 1E: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|   power_data_transfer_fl = swrv.front_left_spin_power; |   power_data_transfer_fl = swrv.front_left_spin_power; | ||||||
|   power_data_transfer_fr = swrv.front_right_spin_power; |   power_data_transfer_fr = swrv.front_right_spin_power; | ||||||
|   power_data_transfer_bl = swrv.back_left_spin_power; |   power_data_transfer_bl = swrv.back_left_spin_power; | ||||||
|   power_data_transfer_br = swrv.back_right_spin_power; |   power_data_transfer_br = swrv.back_right_spin_power; | ||||||
|   spinlock_release(&drive_power_command_spinlock_flag); |   spinlock_release(&drive_power_command_spinlock_flag); | ||||||
|  |  | ||||||
|   Serial.printf("DEBUG 1F: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|   // update stepper motors |   // update stepper motors | ||||||
|   // TESTING: comment out this code to check performance impact |   // TESTING: comment out this code to check performance impact | ||||||
|   set_motor(LIFTALL, clawarm.arm_set_motor_int); |   set_motor(LIFTALL, clawarm.arm_set_motor_int); | ||||||
|  |  | ||||||
|   Serial.printf("DEBUG 1G: %llu ms\r\n", millis() - previous_loop_start_time_core_0); |  | ||||||
|  |  | ||||||
|   // update servos |   // update servos | ||||||
|  |   Serial.printf("claw set motor int %i\r\n", clawarm.claw_set_motor_int); | ||||||
|  |   set_motor(ARMSERVO1, clawarm.claw_set_motor_int); | ||||||
|  |   set_motor(ARMSERVO2, - clawarm.claw_set_motor_int); | ||||||
|   /* |   /* | ||||||
|   // TODO: Figure out servo mapping |   // TODO: Figure out servo mapping | ||||||
|   set_motor(SERVOTILT, clawarm.tilt_set_motor_int); |   set_motor(SERVOTILT, clawarm.tilt_set_motor_int); | ||||||
|   | |||||||
| @@ -54,7 +54,7 @@ swerve_drive initializeSwerveDrive(int front_left_encoder, int front_right_encod | |||||||
| swerve_drive updateSwerveCommand(swerve_drive input) | swerve_drive updateSwerveCommand(swerve_drive input) | ||||||
| { | { | ||||||
|     swerve_drive out = input; |     swerve_drive out = input; | ||||||
|  |     float new_drive_coefficient = out.target_drive_power; | ||||||
|     // Set the new speed of the steering motors |     // Set the new speed of the steering motors | ||||||
|     if(/*(out.target_drive_power != 0.0f || out.current_drive_power != 0.0f) &&*/ out.enable_steering) { // Only set the steering power if the robot is trying to move, and if steering is enabled |     if(/*(out.target_drive_power != 0.0f || out.current_drive_power != 0.0f) &&*/ out.enable_steering) { // Only set the steering power if the robot is trying to move, and if steering is enabled | ||||||
|         // Calculate the distance and direction each motor needs to steer from where it is now |         // Calculate the distance and direction each motor needs to steer from where it is now | ||||||
| @@ -68,6 +68,11 @@ swerve_drive updateSwerveCommand(swerve_drive input) | |||||||
|         out.back_left_spin_power = calculateSteeringMotorSpeed(back_left_delta, out.back_left_measured_spin_speed); |         out.back_left_spin_power = calculateSteeringMotorSpeed(back_left_delta, out.back_left_measured_spin_speed); | ||||||
|         out.back_right_spin_power = calculateSteeringMotorSpeed(back_right_delta, out.back_right_measured_spin_speed); |         out.back_right_spin_power = calculateSteeringMotorSpeed(back_right_delta, out.back_right_measured_spin_speed); | ||||||
|  |  | ||||||
|  |         float max_abs_steering_delta = max(max(fabs(front_left_delta), fabs(front_right_delta)), max(fabs(back_left_delta), fabs(back_right_delta))); | ||||||
|  |         if (max_abs_steering_delta > STEERING_TOLERANCE_DISABLE_DRIVE) { | ||||||
|  |             new_drive_coefficient = 0; | ||||||
|  |         } | ||||||
|  |         Serial.printf("max_abs_steering_delta = %f\t\tndc = %f\r\n", max_abs_steering_delta, new_drive_coefficient); | ||||||
|  |  | ||||||
|         // TESTING DEBUG print 20230929 |         // TESTING DEBUG print 20230929 | ||||||
|         Serial.printf("FL delta = %f\t\tFL steer = %f\r\n", front_left_delta, out.front_left_spin_power); |         Serial.printf("FL delta = %f\t\tFL steer = %f\r\n", front_left_delta, out.front_left_spin_power); | ||||||
| @@ -75,6 +80,7 @@ swerve_drive updateSwerveCommand(swerve_drive input) | |||||||
|         Serial.printf("BL delta = %f\t\tBL steer = %f\r\n", back_left_delta, out.back_left_spin_power); |         Serial.printf("BL delta = %f\t\tBL steer = %f\r\n", back_left_delta, out.back_left_spin_power); | ||||||
|         Serial.printf("BR delta = %f\t\tBR steer = %f\r\n", back_right_delta, out.back_right_spin_power); |         Serial.printf("BR delta = %f\t\tBR steer = %f\r\n", back_right_delta, out.back_right_spin_power); | ||||||
|          |          | ||||||
|  |  | ||||||
|     } else { // Stop the steering motors if the robot is stopped and not trying to move, or if steering is disabled |     } else { // Stop the steering motors if the robot is stopped and not trying to move, or if steering is disabled | ||||||
|         out.front_left_spin_power = 0.0f; |         out.front_left_spin_power = 0.0f; | ||||||
|         out.front_right_spin_power = 0.0f; |         out.front_right_spin_power = 0.0f; | ||||||
| @@ -84,14 +90,12 @@ swerve_drive updateSwerveCommand(swerve_drive input) | |||||||
|  |  | ||||||
|     // Set the current drive power to the target drive power, TODO: this is TEMPORARY, add in something to slow the current (set) speed until the wheels are in the correct direction |     // Set the current drive power to the target drive power, TODO: this is TEMPORARY, add in something to slow the current (set) speed until the wheels are in the correct direction | ||||||
|     //out.current_drive_power = out.target_drive_power; |     //out.current_drive_power = out.target_drive_power; | ||||||
|     float max_abs_steering_delta = max(max(fabs(front_left_delta), fabs(front_right_delta)), max(fabs(back_left_delta), fabs(back_right_delta))); |  | ||||||
|     float steering_disable_drive = (float) (max_abs_steering_delta <= STEERING_TOLERANCE_DISABLE_DRIVE); |  | ||||||
|  |  | ||||||
|     // Set the new drive motor power, apply coefficients, set between -127.0 and 127.0 |     // Set the new drive motor power, apply coefficients, set between -127.0 and 127.0 | ||||||
|     out.front_left_power = out.current_drive_power * out.front_left_coefficient * steering_disable_drive * MOTOR_MAX_POWER; |     out.current_drive_power = new_drive_coefficient; | ||||||
|     out.front_right_power = out.current_drive_power * out.front_right_coefficient * steering_disable_drive * MOTOR_MAX_POWER; |     out.front_left_power = new_drive_coefficient * out.front_left_coefficient * DRIVE_MOTOR_MAX_POWER; | ||||||
|     out.back_left_power = out.current_drive_power * out.back_left_coefficient * steering_disable_drive * MOTOR_MAX_POWER; |     out.front_right_power = new_drive_coefficient * out.front_right_coefficient * DRIVE_MOTOR_MAX_POWER; | ||||||
|     out.back_right_power = out.current_drive_power * out.back_right_coefficient * steering_disable_drive * MOTOR_MAX_POWER; |     out.back_left_power = new_drive_coefficient * out.back_left_coefficient * DRIVE_MOTOR_MAX_POWER; | ||||||
|  |     out.back_right_power = new_drive_coefficient * out.back_right_coefficient * DRIVE_MOTOR_MAX_POWER; | ||||||
|      |      | ||||||
|     return out; |     return out; | ||||||
| } | } | ||||||
| @@ -99,19 +103,29 @@ swerve_drive updateSwerveCommand(swerve_drive input) | |||||||
| float calculateSteeringMotorSpeed(float steering_delta, float current_angular_speed) // Calculate the speed of a steering motor based on its distance from its target angle and its current angular speed | float calculateSteeringMotorSpeed(float steering_delta, float current_angular_speed) // Calculate the speed of a steering motor based on its distance from its target angle and its current angular speed | ||||||
| { | { | ||||||
|     float abs_steering_delta = fabs(steering_delta); |     float abs_steering_delta = fabs(steering_delta); | ||||||
|     if(abs_steering_delta > STEERING_SLOW_DELTA) { // In full speed range, still far enough away from the target angle |     if(abs_steering_delta > STEERING_SLOW_DELTA && abs_steering_delta > STEERING_TOLERANCE) { // In full speed range, still far enough away from the target angle | ||||||
|         return STEERING_MOTOR_SPEED_LIMIT * (steering_delta < 0.0f ? -1.0f : 1.0f); |         return STEERING_MOTOR_SPEED_LIMIT * (steering_delta < 0.0f ? -1.0f : 1.0f); | ||||||
|     } else { // Slow down the speed of the steering motor since it's close to its target angle |     } else { // Slow down the speed of the steering motor since it's close to its target angle | ||||||
|  |  | ||||||
|         steering_delta += STEERING_ACCEL_SLOW_DELAY * current_angular_speed; // Modify the steering delta to the estimated delta in STEERING_ACCEL_SLOW_DELAY seconds to account for motor acceleration |         float calc_steering_delta = steering_delta + (STEERING_ACCEL_SLOW_DELAY * current_angular_speed); // Modify the steering delta to the estimated delta in STEERING_ACCEL_SLOW_DELAY seconds to account for motor acceleration | ||||||
|         float steering_limit_signed = STEERING_MOTOR_SPEED_LIMIT * (steering_delta < 0.0f ? -1.0f : 1.0f); // Update the sign to account for the future location estimation above |         float calc_steering_limit_signed = STEERING_MOTOR_SPEED_LIMIT * (calc_steering_delta < 0.0f ? -1.0f : 1.0f); // Update the sign to account for the future location estimation above | ||||||
|         abs_steering_delta = fabs(steering_delta); // Update abs_steering_delta with the new steering_delta |         float calc_abs_steering_delta = fabs(calc_steering_delta); // Update abs_steering_delta with the new steering_delta | ||||||
|         float steering_speed_fraction = powf(abs_steering_delta / STEERING_SLOW_DELTA, 2.0f); // Fraction of full speed being used |         float steering_speed_fraction = powf(calc_abs_steering_delta / STEERING_SLOW_DELTA, 2.0f); // Fraction of full speed being used | ||||||
|         //return steering_limit_signed * (1.0f - (abs_steering_delta / STEERING_SLOW_DELTA)); |         //return steering_limit_signed * (1.0f - (abs_steering_delta / STEERING_SLOW_DELTA)); | ||||||
|         if(current_angular_speed < STEERING_STALL_DETECT_ANGULAR_SPEED) { // Detect motor stall during approach and increase speed to allow for approach |         if(current_angular_speed < STEERING_STALL_DETECT_ANGULAR_SPEED || steering_speed_fraction < STEERING_SLOW_APPROACH_SPEED) { // Detect motor stall during approach and increase speed to allow for approach | ||||||
|             // steering_speed_fraction += STEERING_SLOW_APPROACH_SPEED; // Commented out until this is necessary |             steering_speed_fraction = STEERING_SLOW_APPROACH_SPEED; | ||||||
|  |              | ||||||
|  |             if(calc_abs_steering_delta < STEERING_HOVER_RANGE) { // Decrease speed further if the steering is extremely close to the target | ||||||
|  |                 steering_speed_fraction *= (calc_abs_steering_delta / STEERING_HOVER_RANGE); | ||||||
|  |             } else if(abs_steering_delta < STEERING_HOVER_RANGE) { | ||||||
|  |                 steering_speed_fraction *= (abs_steering_delta / STEERING_HOVER_RANGE); | ||||||
|  |             } | ||||||
|         } |         } | ||||||
|         return steering_limit_signed * steering_speed_fraction; // Apply the direction |         if(calc_abs_steering_delta < STEERING_TOLERANCE) { // Stop the steering motors if they are within the tolerance range | ||||||
|  |             return 0.0f; | ||||||
|  |         } | ||||||
|  |  | ||||||
|  |         return calc_steering_limit_signed * steering_speed_fraction; // Apply the direction | ||||||
|     } |     } | ||||||
| } | } | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user