2013-08-21 14:28:44 +02:00

623 lines
20 KiB
Python

"""
Python library to control an UR robot through its TCP/IP interface
DOC LINK
http://support.universal-robots.com/URRobot/RemoteAccess
"""
from __future__ import absolute_import # necessary for import tricks to work with python2
__author__ = "Olivier Roulet-Dubonnet"
__copyright__ = "Copyright 2011-2013, Sintef Raufoss Manufacturing"
__credits__ = ["Olivier Roulet-Dubonnet"]
__license__ = "GPLv3"
import logging
MATH3D = True
try:
import math3d as m3d
import numpy as np
except ImportError:
MATH3D = False
print("pymath3d library could not be found on this computer, disabling use of matrices")
from urx import urrtmon
from urx import ursecmon
from urx import tracker
class RobotException(Exception):
pass
class URRobot(object):
"""
Python interface to socket interface of UR robot.
programs are send to port 3002
data is read from secondary interface(10Hz?) and real-time interface(125Hz) (called Matlab interface in documentation)
Since parsing the RT interface uses som CPU, and does not support all robots versions, it is disabled by default
The RT interfaces is only used for the get_force related methods
Rmq: A program sent to the robot i executed immendiatly and any running program is stopped
"""
def __init__(self, host, useRTInterface=False, logLevel=logging.WARN, parserLogLevel=logging.WARN):
self.logger = logging.getLogger(self.__class__.__name__)
if len(logging.root.handlers) == 0: #dirty hack
logging.basicConfig()
self.logger.setLevel(logLevel)
self.host = host
self.logger.info("Opening secondary monitor socket")
self.secmon = ursecmon.SecondaryMonitor(self.host, logLevel=logLevel, parserLogLevel=parserLogLevel) #data from robot at 10Hz
if useRTInterface:
self.logger.info("Opening real-time monitor socket")
self.rtmon = urrtmon.URRTMonitor(self.host)# som information is only available on rt interface
else:
self.rtmon = None
#the next 3 values must be conservative! otherwise we may wait forever
self.joinEpsilon = 0.01 # precision of joint movem used to wait for move completion
#URScript is limited in the character length of floats it accepts
self.max_float_length = 6 # FIXME: check max length!!!
if useRTInterface:
self.rtmon.start()
self.secmon.wait() # make sure we get data to not suprise clients
def __repr__(self):
return "Robot Object (IP=%s, state=%s)" % (self.host, self.secmon.get_all_data()["RobotModeData"])
def __str__(self):
return self.__repr__()
def is_running(self): # legacy
return self.secmon.running
def is_program_running(self):
return self.secmon.is_program_running()
def send_program(self, prog):
self.logger.info("Sending program: " + prog)
self.secmon.send_program(prog)
def get_tcp_force(self, wait=True):
"""
return measured force in TCP
if wait==True, waits for next packet before returning
"""
return self.rtmon.getTCFForce(wait)
def get_force(self, wait=True):
"""
length of force vector returned by get_tcp_force
if wait==True, waits for next packet before returning
"""
tcpf = self.get_tcp_force( wait)
force = 0
for i in tcpf:
force += i**2
return force**0.5
def set_tcp(self, tcp):
"""
set robot flange to tool tip transformation
"""
prog = "set_tcp(p[{}, {}, {}, {}, {}, {}])".format(*tcp)
self.send_program(prog)
def set_payload(self, weight, cog=None):
"""
set payload in Kg
cog is a vector x,y,z
if cog is not specified, then tool center point is used
"""
if cog:
cog = list(cog)
cog.insert(0, weight)
prog = "set_payload({}, ({},{},{}))".format(*cog)
else:
prog = "set_payload(%s)" % weight
self.send_program(prog)
def set_gravity(self, vector):
"""
set direction of gravity
"""
prog = "set_gravity(%s)" % list(vector)
self.send_program(prog)
def send_message(self, msg):
"""
send message to the GUI log tab on the robot controller
"""
prog = "textmsg(%s)" % msg
self.send_program(prog)
def set_digital_out(self, output, val):
"""
set digital output. val is a bool
"""
if val in (True, 1):
val = "True"
else:
val = "False"
self.send_program('digital_out[%s]=%s' % (output, val))
def get_analog_inputs(self):
"""
get analog input
"""
data = self.secmon.get_all_data()
return data["MasterBoardData"]["analogInput0"], data["MasterBoardData"]["analogInput1"]
def get_analog_in(self, nb):
"""
get analog input
"""
data = self.secmon.get_all_data()
return data["MasterBoardData"]["analogInput" + str(nb)]
def get_digital_in_bits(self):
"""
get digital output
"""
data = self.secmon.get_all_data()
return data["MasterBoardData"]["digitalInputBits"]
def get_digital_in(self, nb):
"""
get digital output
"""
data = self.secmon.get_all_data()
val = data["MasterBoardData"]["digitalInputBits"]
mask = 1 << nb
if (val & mask):
return 1
else:
return 0
def get_digital_out(self, val):
"""
get digital output
"""
data = self.secmon.get_all_data()
output = data["MasterBoardData"]["digitalOutputBits"]
mask = 1 << val
if (output & mask):
return 1
else:
return 0
def set_analog_out(self, output, val):
"""
set analog output, val is a float
"""
prog = "set_analog_output(%s, %s)" % (output, val)
self.send_program(prog)
def set_tool_voltage(self, val):
"""
set voltage to be delivered to the tool, val is 0, 12 or 24
"""
prog = "set_tool_voltage(%s)" % (val)
self.send_program(prog)
def movej(self, joints, acc=0.1, vel=0.05, wait=True, relative=False):
"""
move in joint space
"""
if relative:
l = self.getj()
joints = [v + l[i] for i, v in enumerate(joints)]
joints = [round(j, self.max_float_length) for j in joints]
prog = "movej(%s, a=%s, v=%s)" % (list(joints), acc, vel)
joints.append(acc)
joints.append(vel)
prog = "movej([{},{},{},{},{},{}], a={}, v={})".format(*joints)
self.send_program(prog)
if not wait:
return None
else:
self.wait_for_move()
return self.getj()
def wait_for_move(self):
"""
wait until a move is completed
"""
# it is important to sleep since robot may takes a while to get into running state,
# for a physical move 0.5s is very short
self.logger.debug("Waiting for move completion")
for i in range(3):
self.secmon.wait()
while True:
if not self.is_running():
raise RobotException("Robot stopped")
jts = self.secmon.get_joint_data(wait=True)
finished = True
for i in range(0, 6):
#Rmq: q_target is an interpolated target we have no control over
if abs(jts["q_actual%s"%i] - jts["q_target%s"%i]) > self.joinEpsilon:
print("Waiting for end move, q_actual is {}, q_target is {}, diff is {}, epsilon is {}".format( jts["q_actual%s"%i], jts["q_target%s"%i] , jts["q_actual%s"%i] - jts["q_target%s"%i], self.radialEpsilon))
finished = False
break
if finished and not self.secmon.is_program_running():
self.logger.debug("move has ended")
return
def getj(self, wait=False):
"""
get joints position
"""
jts = self.secmon.get_joint_data(wait)
return [jts["q_actual0"], jts["q_actual1"], jts["q_actual2"], jts["q_actual3"], jts["q_actual4"], jts["q_actual5"]]
def speedl(self, velocities, acc, min_time):
"""
move at given velocities until minimum min_time seconds
"""
vels = [round(i, self.max_float_length) for i in velocities]
vels.append(acc)
vels.append(min_time)
prog = "speedl([{},{},{},{},{},{}], a={}, t_min={})".format(*vels)
self.send_program(prog)
def speedj(self, velocities, acc, min_time):
"""
move at given joint velocities until minimum min_time seconds
"""
vels = [round(i, self.max_float_length) for i in velocities]
vels.append(acc)
vels.append(min_time)
prog = "speedj([{},{},{},{},{},{}], a={}, t_min={})".format(*vels)
self.send_program(prog)
def movel(self, tpose, acc=0.01, vel=0.01, wait=True, relative=False):
"""
linear move
"""
if relative:
l = self.getl()
tpose = [v + l[i] for i, v in enumerate(tpose)]
tpose = [round(i, self.max_float_length) for i in tpose]
#prog = "movel(p%s, a=%s, v=%s)" % (tpose, acc, vel)
tpose.append(acc)
tpose.append(vel)
prog = "movel(p[{},{},{},{},{},{}], a={}, v={})".format(*tpose)
self.send_program(prog)
if not wait:
return None
else:
self.wait_for_move()
return self.getl()
def movep(self, tpose, acc=0.01, vel=0.01, radius=0, wait=True, relative=False):
"""
????
"""
if relative:
l = self.getl()
tpose = [v + l[i] for i, v in enumerate(tpose)]
tpose = [round(i, self.max_float_length) for i in tpose]
#prog = "movel(p%s, a=%s, v=%s)" % (tpose, acc, vel)
tpose.append(acc)
tpose.append(vel)
tpose.append(radius)
prog = "movep(p[{},{},{},{},{},{}], a={}, v={}, r={})".format(*tpose)
self.send_program(prog)
if not wait:
return None
else:
self.wait_for_move()
return self.getl()
def getl(self, wait=False):
"""
get TCP position
"""
pose = self.secmon.get_cartesian_info(wait)
if pose:
pose = [pose["X"], pose["Y"], pose["Z"], pose["Rx"], pose["Ry"], pose["Rz"]]
self.logger.debug("Current pose from robot: " + str(pose))
return pose
def get_pose(self, wait=False):
return self.getl(wait)
def movec(self, pose, pose_via, pose_to, acc, vel, wait=True):
"""
Move Circular: Move to position (circular in tool-space)
see UR documentation
"""
pose = [round(i, self.max_float_length) for i in pose]
pose_via = [round(i, self.max_float_length) for i in pose_via]
pose_to = [round(i, self.max_float_length) for i in pose_to]
prog = "movec(p%s, p%s, p%s, a=%s, v=%s)" % (pose, pose_via, pose_to, acc, vel)
self.send_program(prog)
if not wait:
return None
else:
self.wait_for_move()
return self.getl()
def moveps(self, pose_list, acc=0.01, vel=0.01 , radius=0.01, wait=True):
"""
Concatenate several movel commands and applies a blending radius
pose_list is a list of pose.
"""
header = "def myProg():\n"
end = "end\n"
template = "movep(p[{},{},{},{},{},{}], a={}, v={}, r={})\n"
prog = header
for idx, pose in enumerate(pose_list):
pose.append(acc)
pose.append(vel)
if idx != (len(pose_list) -1 ):
pose.append(radius)
else:
pose.append(0)
prog += template.format(*pose)
prog += end
self.send_program(prog)
if not wait:
return None
else:
self.wait_for_move()
return self.getl()
def stopl(self, acc = 0.5):
self.send_program("stopl(%s)" % acc)
def stopj(self, acc = 1.5):
self.send_program("stopj(%s)" % acc)
def stop(self):
self.stopj()
def cleanup(self):
self.logger.info("Closing sockets to robot")
self.secmon.cleanup()
if self.rtmon:
self.rtmon.stop()
shutdown = cleanup #this might be wrong since we could also shutdown the robot from this script
def set_freedrive(self, val):
if val:
self.send_program("set robotmode freedrive")
else:
self.send_program("set robotmode run")
def set_simulation(self, val):
if val:
self.send_program("set sim")
else:
self.send_program("set real")
class Robot(URRobot):
"""
Generic Python interface to an industrial robot.
Compare to the URRobot class, this class adds the possibilty to work directly with matrices
and includes support for calibrating the robot coordinate system
"""
def __init__(self, host, useRTInterface=False, logLevel = logging.WARN, parserLogLevel=logging.WARN):
URRobot.__init__(self, host, useRTInterface, logLevel=logLevel, parserLogLevel=parserLogLevel)
self.default_linear_acceleration = 0.01
self.default_linear_velocity = 0.01
self.csys_dict = {}
self.csys = None
self.csys_inv = None
self.set_csys("Robot", m3d.Transform()) #identity
self.tracker = None
def set_tcp(self, tcp):
if type(tcp) == m3d.Transform:
tcp = tcp.pose_vector
URRobot.set_tcp(self, tcp)
def add_csys(self, name, matrix):
self.csys_dict[name] = matrix
def get_csys_list(self):
return self.csys_dict
def set_csys(self, name, matrix=None):
"""
Set reference corrdinate system to use
if matrix != None then a new csys is created
"""
if matrix:
self.add_csys(name, matrix)
self.csys = self.csys_dict[name]
self.csys_inv = self.csys.inverse()
def orient(self, orient, acc=None, vel=None, wait=True):
if type(orient) is not m3d.Orientation:
orient = m3d.Orientation(orient)
trans = self.get_transform()
trans.orient = orient
self.apply_transform(trans, acc, vel, wait)
def set_orientation(self, orient, acc=None, vel=None, wait=True):
self.orient(orient, acc, vel, wait)
def translate(self, vect, acc=None, vel=None, wait=True):
"""
move tool in base coordinate, keeping orientation
"""
t = m3d.Transform()
if not type(vect) is m3d.Vector:
vect = m3d.Vector(vect)
t.pos += m3d.Vector(vect)
return self.add_transform_base(t, acc, vel, wait)
def translate_tool(self, vect, acc=None, vel=None, wait=True):
"""
move tool in tool coordinate, keeping orientation
"""
t = m3d.Transform()
if not type(vect) is m3d.Vector:
vect = m3d.Vector(vect)
t.pos += vect
return self.add_transform_tool(t, acc, vel, wait)
def set_pos(self, vect, acc=None, vel=None, wait=True):
"""
set tool to given pos, keeping constant orientation
"""
if not type(vect) is m3d.Vector:
vect = m3d.Vector(vect)
trans = m3d.Transform(self.get_orientation(), m3d.Vector(vect))
return self.apply_transform(trans, acc, vel, wait)
def apply_transform(self, trans, acc=None, vel=None, wait=True, process=True):
"""
move tcp to point and orientation defined by a transformation
if process is True, movep is used instead of movel
"""
if not acc:
acc = self.default_linear_acceleration
if not vel:
vel = self.default_linear_velocity
t = self.csys * trans
if process:
pose = URRobot.movep(self, t.pose_vector, acc=acc, vel=vel, wait=wait)
else:
pose = URRobot.movel(self, t.pose_vector, acc=acc, vel=vel, wait=wait)
if pose != None : #movel does not return anything when wait is False
return self.csys_inv * m3d.Transform(pose)
def add_transform_base(self, trans, acc=None, vel=None, wait=True, process=True):
"""
Add transform expressed in base coordinate
"""
pose = self.get_transform()
return self.apply_transform(trans * pose, acc, vel, wait, process)
def add_transform_tool(self, trans, acc=None, vel=None, wait=True, process=True):
"""
Add transform expressed in tool coordinate
"""
pose = self.get_transform()
return self.apply_transform(pose * trans, acc, vel, wait, process)
def get_transform(self, wait=False):
"""
get current transform from base to to tcp
"""
pose = URRobot.getl(self, wait)
trans = self.csys_inv * m3d.Transform(pose)
return trans
def get_pose(self, wait=False):
"""
get current transform from base to to tcp
"""
return self.get_transform(wait)
def get_orientation(self, wait=False):
trans = self.get_transform(wait)
return trans.orient
def get_pos(self, wait=False):
trans = self.get_transform(wait)
return trans.pos
def speedl(self, velocities, acc, min_time):
"""
move at given velocities until minimum min_time seconds
"""
v = self.csys.orient * m3d.Vector(velocities[:3])
w = self.csys.orient * m3d.Vector(velocities[3:])
URRobot.speedl(self, np.concatenate((v.data, w.data)), acc, min_time)
def speedl_tool(self, velocities, acc, min_time):
"""
move in tool coordinate at given velocities until minimum min_time seconds
"""
pose = self.get_transform()
v = self.csys.orient * pose.orient * m3d.Vector(velocities[:3])
w = self.csys.orient * pose.orient * m3d.Vector(velocities[3:])
print(pose, v, w)
URRobot.speedl(self, np.concatenate((v.data, w.data)), acc, min_time)
def movel(self, pose, acc=None, vel=None, wait=True, relative=False, radius=0.01):
"""
move linear to given pose in current csys
if pose is a list of poses then moveps is called
"""
if type(pose[0]) in (list, tuple):
return self.moveps(pose, acc, vel, radius, wait)
t = m3d.Transform(pose)
if relative:
return self.add_transform_base(t, acc, vel, wait, process=False)
else:
return self.apply_transform(t, acc, vel, wait, process=False)
def movel_tool(self, pose, acc=None, vel=None, wait=True):
"""
move linear to given pose in tool coordinate
"""
t = m3d.Transform(pose)
self.add_transform_tool(t, acc, vel, wait, process=False)
def getl(self, wait=False):
"""
return current transformation from tcp to current csys
"""
t = self.get_transform(wait)
return t.pose_vector
def moveps(self, pose_list, acc=0.01, vel=0.01 , radius=0.01, wait=True):
"""
Concatenate several movep commands and applies a blending radius
pose_list is a list of pose.
"""
new_poses = []
for idx, pose in enumerate(pose_list):
t = self.csys * m3d.Transform(pose)
pose = t.pose_vector
pose = [round(i, self.max_float_length) for i in pose]
new_poses.append(pose)
return URRobot(new_poses, acc, vel, radius, wait)
def set_gravity(self, vector):
if type(vector) == m3d.Vector:
vector = vector.list
return URRobot.set_gravity(self, vector)
def get_tracker(self):
"""
return an object able to track robot move for logging
"""
t = tracker.Tracker(self.host)
t.set_csys(self.csys)
return t
if not MATH3D:
Robot = URRobot
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO) #enable logging
try:
#robot = Robot( '192.168.1.6')
robot = Robot( '192.168.1.5')
r = robot
from IPython.frontend.terminal.embed import InteractiveShellEmbed
ipshell = InteractiveShellEmbed( banner1="\n\n robot object is available \n\n")
ipshell(local_ns=locals())
finally:
if "robot" in dir():
robot.cleanup()