""" Python library to control an UR robot through its TCP/IP interface DOC LINK http://support.universal-robots.com/URRobot/RemoteAccess """ from __future__ import absolute_import # necessary for import tricks to work with python2 __author__ = "Olivier Roulet-Dubonnet" __copyright__ = "Copyright 2011-2012, Sintef Raufoss Manufacturing Roulet-Dubonnet" __credits__ = ["Olivier Roulet-Dubonnet"] __license__ = "GPLv3" import time import logging m3d = True try: import math3d as m3d import numpy as np except ImportError: m3d = False print("pymath3d library could not be found on this computer, disabling use of matrices") from urx import urrtmon from urx import ursecmon from urx import tracker class RobotException(Exception): pass class URRobot(object): """ Python interface to socket interface of UR robot. programs are send to port 3002 data is read from secondary interface(10Hz?) and real-time interface(125Hz) (called Matlab interface in documentation) Since parsing the RT interface uses som CPU, and does not support all robots versions, it is disabled by default The RT interfaces is only used for the get_force related methods Rmq: A program sent to the robot i executed immendiatly and any running program is stopped """ def __init__(self, host, useRTInterface=False, logLevel=logging.WARN, parserLogLevel=logging.WARN): self.logger = logging.getLogger(self.__class__.__name__) if len(logging.root.handlers) == 0: #dirty hack logging.basicConfig() self.logger.setLevel(logLevel) self.host = host self.logger.info("Opening secondary monitor socket") self.secmon = ursecmon.SecondaryMonitor(self.host, logLevel=logLevel, parserLogLevel=parserLogLevel) #data from robot at 10Hz if useRTInterface: self.logger.info("Opening real-time monitor socket") self.rtmon = urrtmon.URRTMonitor(self.host)# som information is only available on rt interface else: self.rtmon = None #the next 3 values must be conservative! otherwise we may wait forever self.jointEpsilon = 0.05 # precision of joint movem used to wait for move completion self.linearEpsilon = 0.0005 # precision of linear movement, used to wait for move completion self.radialEpsilon = 0.05 # precision of radial movement, used to wait for move completion #URScript is limited in the character length of floats it accepts self.max_float_length = 6 # FIXME: check max length!!! if useRTInterface: self.rtmon.start() self.secmon.wait() # make sure we get data to not suprise clients def __repr__(self): return "Robot Object (IP=%s, state=%s)" % (self.host, self.secmon.get_all_data()["RobotModeData"]) def __str__(self): return self.__repr__() def is_running(self): # legacy return self.secmon.running def is_program_running(self): return self.secmon.is_program_running() def send_program(self, prog): self.logger.info("Sending program: " + prog) self.secmon.send_program(prog) def get_tcp_force(self, wait=True): """ return measured force in TCP if wait==True, waits for next packet before returning """ return self.rtmon.getTCFForce(wait) def get_force(self, wait=True): """ length of force vector returned by get_tcp_force if wait==True, waits for next packet before returning """ tcpf = self.get_tcp_force( wait) force = 0 for i in tcpf: force += i**2 return force**0.5 def set_tcp(self, tcp): """ set robot flange to tool tip transformation """ prog = "set_tcp(p[{}, {}, {}, {}, {}, {}])".format(*tcp) self.secmon.send_program(prog) def set_payload(self, weight, cog=None): """ set payload in Kg cog is a vector x,y,z if cog is not specified, then tool center point is used """ if cog: cog = list(cog) cog.insert(0, weight) prog = "set_payload({}, ({},{},{}))".format(*cog) else: prog = "set_payload(%s)" % weight self.secmon.send_program(prog) def set_gravity(self, vector): """ set direction of gravity """ prog = "set_gravity(%s)" % list(vector) self.secmon.send_program(prog) def send_message(self, msg): """ send message to the GUI log tab on the robot controller """ prog = "textmsg(%s)" % msg self.secmon.send_program(prog) def set_digital_out(self, output, val): """ set digital output. val is a bool """ if val in (True, 1): val = "True" else: val = "False" self.secmon.send_program('digital_out[%s]=%s' % (output, val)) def get_analog_inputs(self): """ get analog input """ data = self.secmon.get_all_data() return data["MasterBoardData"]["analogInput0"], data["MasterBoardData"]["analogInput1"] def get_analog_in(self, nb): """ get analog input """ data = self.secmon.get_all_data() return data["MasterBoardData"]["analogInput" + str(nb)] def get_digital_in_bits(self): """ get digital output """ data = self.secmon.get_all_data() return data["MasterBoardData"]["digitalInputBits"] def get_digital_in(self, nb): """ get digital output """ data = self.secmon.get_all_data() val = data["MasterBoardData"]["digitalInputBits"] mask = 1 << nb if (val & mask): return 1 else: return 0 def get_digital_out(self, val): """ get digital output """ data = self.secmon.get_all_data() output = data["MasterBoardData"]["digitalOutputBits"] mask = 1 << val if (output & mask): return 1 else: return 0 def set_analog_out(self, output, val): """ set analog output, val is a float """ prog = "set_analog_output(%s, %s)" % (output, val) self.secmon.send_program(prog) def set_tool_voltage(self, val): """ set voltage to be delivered to the tool, val is 0, 12 or 24 """ prog = "set_tool_voltage(%s)" % (val) self.secmon.send_program(prog) def movej(self, joints, acc=0.1, vel=0.05, wait=True, relative=False): """ move in joint space """ if relative: l = self.getj() joints = [v + l[i] for i, v in enumerate(joints)] joints = [round(j, self.max_float_length) for j in joints] prog = "movej(%s, a=%s, v=%s)" % (list(joints), acc, vel) joints.append(acc) joints.append(vel) prog = "movej([{},{},{},{},{},{}], a={}, v={})".format(*joints) self.send_program(prog) if not wait: return None else: self.wait_for_move() return self.getj() def wait_for_move(self): time.sleep(0.2)# it is important to sleep since robot may takes a while to get into running state while True: if not self.is_running(): raise RobotException("Robot stopped") jts = self.secmon.get_joint_data(wait=True) finished = True for i in range(0, 6): if abs(jts["q_actual%s"%i] - jts["q_target%s"%i]) > self.radialEpsilon: #print("Waiting for end move, q_actual is {}, q_target is {}, diff is {}, epsilon is {}".format( jts["q_actual%s"%i], jts["q_target%s"%i] , jts["q_actual%s"%i] - jts["q_target%s"%i], self.radialEpsilon)) finished = False break if finished and not self.secmon.is_program_running(): return def getj(self, wait=False): """ get joints position """ jts = self.secmon.get_joint_data(wait) return [jts["q_actual0"], jts["q_actual1"], jts["q_actual2"], jts["q_actual3"], jts["q_actual4"], jts["q_actual5"]] def speedl(self, velocities, acc, min_time): """ move at given velocities until minimum min_time seconds """ vels = [round(i, self.max_float_length) for i in velocities] vels.append(acc) vels.append(min_time) prog = "speedl([{},{},{},{},{},{}], a={}, t_min={})".format(*vels) self.send_program(prog) def speedj(self, velocities, acc, min_time): """ move at given joint velocities until minimum min_time seconds """ vels = [round(i, self.max_float_length) for i in velocities] vels.append(acc) vels.append(min_time) prog = "speedj([{},{},{},{},{},{}], a={}, t_min={})".format(*vels) self.send_program(prog) def movel(self, tpose, acc=0.01, vel=0.01, wait=True, relative=False): """ linear move """ if relative: l = self.getl() tpose = [v + l[i] for i, v in enumerate(tpose)] tpose = [round(i, self.max_float_length) for i in tpose] #prog = "movel(p%s, a=%s, v=%s)" % (tpose, acc, vel) tpose.append(acc) tpose.append(vel) prog = "movel(p[{},{},{},{},{},{}], a={}, v={})".format(*tpose) self.send_program(prog) if not wait: return None else: self.wait_for_move() return self.getl() def movep(self, tpose, acc=0.01, vel=0.01, radius=0, wait=True, relative=False): """ ???? """ if relative: l = self.getl() tpose = [v + l[i] for i, v in enumerate(tpose)] tpose = [round(i, self.max_float_length) for i in tpose] #prog = "movel(p%s, a=%s, v=%s)" % (tpose, acc, vel) tpose.append(acc) tpose.append(vel) tpose.append(radius) prog = "movep(p[{},{},{},{},{},{}], a={}, v={}, r={})".format(*tpose) self.send_program(prog) if not wait: return None else: self.wait_for_move() return self.getl() def getl(self, wait=False): """ get TCP position """ pose = self.secmon.get_cartesian_info(wait) if pose: pose = [pose["X"], pose["Y"], pose["Z"], pose["Rx"], pose["Ry"], pose["Rz"]] self.logger.debug("Current pose from robot: " + str(pose)) return pose def get_pose(self, wait=False): return self.getl(wait) def movec(self, pose, pose_via, pose_to, acc, vel, wait=True): """ Move Circular: Move to position (circular in tool-space) see UR documentation """ pose = [round(i, self.max_float_length) for i in pose] pose_via = [round(i, self.max_float_length) for i in pose_via] pose_to = [round(i, self.max_float_length) for i in pose_to] prog = "movec(p%s, p%s, p%s, a=%s, v=%s)" % (pose, pose_via, pose_to, acc, vel) self.send_program(prog) if not wait: return None else: self.wait_for_move() return self.getl() def movels(self, pose_list, acc=0.01, vel=0.01 , radius=0.01, wait=True): """ Concatenate several movel commands and applies a blending radius pose_list is a list of pose. """ header = "def myProg():\n" end = "end\n" template = "movel(p[{},{},{},{},{},{}], a={}, v={}, r={})\n" prog = header for idx, pose in enumerate(pose_list): pose.append(acc) pose.append(vel) if idx != (len(pose_list) -1 ): pose.append(radius) else: pose.append(0) prog += template.format(*pose) prog += end self.send_program(prog) if not wait: return None else: self.wait_for_move() return self.getl() def stopl(self, acc = 0.5): self.send_program("stopl(%s)" % acc) def stopj(self, acc = 1.5): self.send_program("stopj(%s)" % acc) def stop(self): self.stopj() def _eq(self, l1, l2): """ robot joints precision is 0.01, donot give anything smaller!!! """ for i in range(0, len(l1)): if abs(l1[i] -l2[i]) > self.jointEpsilon: return False return True def _eqpose(self, l1, l2): """ epsilonl is for x,y,z epsilonr is for a,b,c robot joints precision is 0.01, do not give anything smaller!!! """ for i in range(0, 3): if abs(l1[i] - l2[i]) > self.linearEpsilon: #print "param: ", i, "val: ", l1[i], "-", l2[i] , "=", abs(l1[i] -l2[i]), " is not under ", self.linearEpsilon return False for i in range(3, 6): if abs(l1[i] - l2[i]) > self.radialEpsilon: #print "param: ", i, "val: ", l1[i], "-", l2[i] , "=", abs(l1[i] -l2[i]), " is not under ", self.radialEpsilon return False return True def cleanup(self): self.logger.info("Closing sockets to robot") self.secmon.cleanup() if self.rtmon: self.rtmon.stop() shutdown = cleanup #this might be wrong since we could also shutdown the robot from this script def set_freedrive(self, val): if val: self.send_program("set robotmode freedrive") else: self.send_program("set robotmode run") def set_simulation(self, val): if val: self.send_program("set sim") else: self.send_program("set real") class Robot(URRobot): """ Generic Python interface to an industrial robot. Compare to the URRobot class, this class adds the possibilty to work directly with matrices and includes support for calibrating the robot coordinate system """ def __init__(self, host, useRTInterface=False, logLevel = logging.WARN, parserLogLevel=logging.WARN): URRobot.__init__(self, host, useRTInterface, logLevel=logLevel, parserLogLevel=parserLogLevel) self.default_linear_acceleration = 0.01 self.default_linear_velocity = 0.01 self.csys_dict = {} self.csys = None self.csys_inv = None self.set_csys("Robot", m3d.Transform()) #identity self.tracker = None def set_tcp(self, tcp): if type(tcp) == m3d.Transform: tcp = tcp.pose_vector URRobot.set_tcp(self, tcp) def add_csys(self, name, matrix): self.csys_dict[name] = matrix def get_csys_list(self): return self.csys_dict def set_csys(self, name, matrix=None): """ Set reference corrdinate system to use if matrix != None then a new csys is created """ if matrix: self.add_csys(name, matrix) self.csys = self.csys_dict[name] self.csys_inv = self.csys.inverse() def orient(self, orient, acc=None, vel=None, wait=True): if type(orient) != m3d.Orientation: orient = m3d.Orientation(orient) trans = self.get_transform() trans.orient = orient self.apply_transform(trans, acc, vel, wait) def set_orientation(self, orient, acc=None, vel=None, wait=True): self.orient(orient, acc, vel, wait) def translate(self, vect, acc=None, vel=None, wait=True): """ move tool in base coordinate, keeping orientation """ t = m3d.Transform() t.pos += vect return self.add_transform_base(t, acc, vel, wait) def translate_tool(self, vect, acc=None, vel=None, wait=True): """ move tool in tool coordinate, keeping orientation """ t = m3d.Transform() t.pos += m3d.Vector(vect) return self.add_transform_tool(t, acc, vel, wait) def set_pos(self, vect, acc=None, vel=None, wait=True): """ set tool to given pos, keeping constant orientation """ trans = m3d.Transform(self.get_orientation(), m3d.Vector(vect)) return self.apply_transform(trans, acc, vel, wait) def apply_transform(self, trans, acc=None, vel=None, wait=True): """ move tcp to point and orientation defined by a transformation """ if not acc: acc = self.default_linear_acceleration if not vel: vel = self.default_linear_velocity t = self.csys * trans pose = URRobot.movel(self, t.pose_vector, acc, vel, wait) if pose != None : #movel does not return anything when wait is False return self.csys_inv * m3d.Transform(pose) def add_transform_base(self, trans, acc=None, vel=None, wait=True): """ Add transform expressed in base coordinate """ pose = self.get_transform() return self.apply_transform(trans * pose, acc, vel, wait) def add_transform_tool(self, trans, acc=None, vel=None, wait=True): """ Add transform expressed in tool coordinate """ pose = self.get_transform() return self.apply_transform(pose * trans, acc, vel, wait) def get_transform(self, wait=False): """ get current transform from base to to tcp """ pose = URRobot.getl(self, wait) trans = self.csys_inv * m3d.Transform(pose) return trans def get_pose(self, wait=False): """ get current transform from base to to tcp """ return self.get_transform(wait) def get_orientation(self, wait=False): trans = self.get_transform(wait) return trans.orient def get_pos(self, wait=False): trans = self.get_transform(wait) return trans.pos def speedl(self, velocities, acc, min_time): """ move at given velocities until minimum min_time seconds """ v = self.csys.orient * m3d.Vector(velocities[:3]) w = self.csys.orient * m3d.Vector(velocities[3:]) URRobot.speedl(self, np.concatenate((v.data, w.data)), acc, min_time) def speedl_tool(self, velocities, acc, min_time): """ move in tool coordinate at given velocities until minimum min_time seconds """ pose = self.get_transform() v = self.csys.orient * pose.orient * m3d.Vector(velocities[:3]) w = self.csys.orient * pose.orient * m3d.Vector(velocities[3:]) print(pose, v, w) URRobot.speedl(self, np.concatenate((v.data, w.data)), acc, min_time) def movel(self, pose, acc=None, vel=None, wait=True, relative=False, radius=0.01): """ move linear to given pose in current csys if pose is a list of poses then movels is called """ if type(pose[0]) == list: return self.movels(pose, acc, vel, radius, wait) t = m3d.Transform(pose) if relative: return self.add_transform_base(t, acc, vel, wait) else: return self.apply_transform(t, acc, vel, wait) def movel_tool(self, pose, acc=None, vel=None, wait=True): """ move linear to given pose in tool coordinate """ t = m3d.Transform(pose) self.add_transform_tool(t, acc, vel, wait) def getl(self, wait=False): """ return current transformation from tcp to current csys """ t = self.get_transform(wait) return t.pose_vector def movels(self, pose_list, acc=0.01, vel=0.01 , radius=0.01, wait=True): """ Concatenate several movel commands and applies a blending radius pose_list is a list of pose. """ new_poses = [] for idx, pose in enumerate(pose_list): t = self.csys * m3d.Transform(pose) pose = t.pose_vector pose = [round(i, self.max_float_length) for i in pose] new_poses.append(pose) return URRobot(new_poses, acc, vel, radius, wait) def set_gravity(self, vector): if type(vector) == m3d.Vector: vector = vector.list return URRobot.set_gravity(self, vector) def get_tracker(self): """ return an object able to track robot move for logging """ t = tracker.Tracker(self.host) t.set_csys(self.csys) return t if not m3d: Robot = URRobot if __name__ == "__main__": logging.basicConfig(level=logging.INFO) #enable logging try: #robot = Robot( '192.168.1.6') robot = Robot( '192.168.1.5') r = robot from IPython.frontend.terminal.embed import InteractiveShellEmbed ipshell = InteractiveShellEmbed( banner1="\n\n robot object is available \n\n") ipshell(local_ns=locals()) finally: if "robot" in dir(): robot.cleanup()