jukebox-software/led_control.py

343 lines
10 KiB
Python
Executable File

#!/usr/bin/env python3
import sacn
import time
import sys
import yaml
import math
import random
from util import fprint
import platform # For getting the operating system name
import subprocess # For executing a shell command
from util import win32
import cv2
import numpy as np
from uptime import uptime
sender = None
debug = True
config = None
leds = None
leds_size = None
leds_normalized = None
controllers = None
data = None
start = uptime()
def ping(host):
#Returns True if host (str) responds to a ping request.
# Option for the number of packets as a function of
if win32:
param1 = '-n'
param2 = '-w'
param3 = '250'
else:
param1 = '-c'
param2 = '-W'
param3 = '0.25'
# Building the command. Ex: "ping -c 1 google.com"
command = ['ping', param1, '1', param2, param3, host]
return subprocess.call(command, stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT) == 0
def map():
global config
global leds
global leds_size
global leds_normalized
global controllers
with open('config.yml', 'r') as fileread:
#global config
config = yaml.safe_load(fileread)
leds = list()
leds_size = list()
controllers = list()
#fprint(config["led"]["map"])
for shape in config["led"]["map"]:
if shape["type"] == "circle":
#fprint(shape["pos"])
anglediv = 360.0 / shape["size"]
angle = 0
radius = shape["diameter"] / 2
lednum = shape["start"]
if len(leds) < lednum + shape["size"]:
for x in range(lednum + shape["size"] - len(leds)):
leds.append(None)
leds_size.append(None)
while angle < 359.999:
tmpangle = angle + shape["angle"]
x = math.cos(tmpangle * (math.pi / 180.0)) * radius + shape["pos"][0]
y = math.sin(tmpangle * (math.pi / 180.0)) * radius + shape["pos"][1]
leds[lednum] = (x,y)
lednum = lednum + 1
angle = angle + anglediv
elif shape["type"] == "strip":
angle = shape["angle"]
lednum = shape["start"]
length = shape["length"]
distdiv = length / shape["size"]
dist = distdiv / 2
xmov = math.cos(angle * (math.pi / 180.0)) * distdiv
ymov = math.sin(angle * (math.pi / 180.0)) * distdiv
pos = shape["pos"]
if len(leds) < lednum + shape["size"]:
for x in range(lednum + shape["size"] - len(leds)):
leds.append(None)
leds_size.append(None)
while dist < length:
leds[lednum] = (pos[0], pos[1])
pos[0] += xmov
pos[1] += ymov
dist += distdiv
lednum = lednum + 1
flag = 0
for x in leds:
if x is None:
flag = flag + 1
if flag > 0:
fprint("Warning: Imperfect LED map ordering. Hiding undefined lights.")
for x in range(len(leds)):
if leds[x] is None:
leds[x] = (0, 0)
#leds = tmpleds.reverse()
#fprint(leds)
# controller mapping
for ctrl in config["led"]["controllers"]:
if len(controllers) < ctrl["universe"]+1:
for x in range(ctrl["universe"]+1 - len(controllers)):
controllers.append(None)
controllers[ctrl["universe"]] = (ctrl["ledstart"],ctrl["ledend"]+1,ctrl["ip"])
for x in range(ctrl["ledstart"],ctrl["ledend"]+1):
leds_size[x] = len(ctrl["mode"])
#fprint(controllers)
if(debug):
import matplotlib.pyplot as plt
plt.axis('equal')
for ctrl in controllers:
plt.scatter(*zip(*leds[ctrl[0]:ctrl[1]]), s=2)
#plt.scatter(*zip(*leds), s=3)
plt.savefig("map.png", dpi=600, bbox_inches="tight")
leds_adj = [(x-min([led[0] for led in leds]), # push to zero start
y-min([led[1] for led in leds]) )
for x, y in leds]
leds_normalized = [(x / max([led[0] for led in leds_adj]),
y / max([led[1] for led in leds_adj]))
for x, y in leds_adj]
#return leds, controllers
def init():
map()
global sender
global config
global leds
global leds_size
global controllers
global data
sender = sacn.sACNsender(fps=config["led"]["fps"], universeDiscovery=False)
sender.start() # start the sending thread
for x in range(len(controllers)):
print("Waiting for the controller at", controllers[x][2], "to be online...", end="")
count = 0
while not ping(controllers[x][2]):
count = count + 1
if count >= config["led"]["timeout"]:
fprint(" ERROR: controller still offline after " + str(count) + " seconds, continuing...")
break
if count < config["led"]["timeout"]:
fprint(" done")
for x in range(len(controllers)):
print("Activating controller", x, "at", controllers[x][2], "with", controllers[x][1]-controllers[x][0], "LEDs.")
sender.activate_output(x+1) # start sending out data
sender[x+1].destination = controllers[x][2]
sender.manual_flush = True
# initialize global pixel data list
data = list()
for x in range(len(leds)):
if leds_size[x] == 3:
data.append((20,20,127))
elif leds_size[x] == 4:
data.append((50,50,255,0))
else:
data.append((0,0,0))
sendall(data)
#time.sleep(50000)
fprint("Running start-up test sequence...")
for y in range(1):
for x in range(len(leds)):
setpixel(5,5,5,x)
sendall(data)
#time.sleep(2)
#alloffsmooth()
def sendall(datain):
# send all LED data to all controllers
# data must have all LED data in it as [(R,G,B,)] tuples in an array, 1 tuple per pixel
global controllers
global sender
sender.manual_flush = True
for x in range(len(controllers)):
sender[x+1].dmx_data = list(sum(datain[controllers[x][0]:controllers[x][1]] , ())) # flatten the subsection of the data array
sender.flush()
time.sleep(0.002)
#sender.flush() # 100% reliable with 2 flushes, often fails with 1
#time.sleep(0.002)
#sender.flush()
def fastsendall(datain):
# send all LED data to all controllers
# data must have all LED data in it as [(R,G,B,)] tuples in an array, 1 tuple per pixel
global controllers
global sender
sender.manual_flush = False
print(datain[controllers[0][0]:controllers[0][1]])
for x in range(len(controllers)):
sender[x+1].dmx_data = list(sum(datain[controllers[x][0]:controllers[x][1]] , ())) # flatten the subsection of the data array
sender.flush()
def senduniverse(datain, lednum):
# send all LED data for 1 controller/universe
# data must have all LED data in it as [(R,G,B,)] tuples in an array, 1 tuple per pixel
global controllers
global sender
for x in range(len(controllers)):
if lednum >= controllers[x][0] and lednum < controllers[x][1]:
sender[x+1].dmx_data = list(sum(datain[controllers[x][0]:controllers[x][1]] , ())) # flatten the subsection of the data array
sender.flush()
time.sleep(0.004)
#sender.flush() # 100% reliable with 2 flushes, often fails with 1
#time.sleep(0.002)
#sender.flush()
def alloff():
tmpdata = list()
for x in range(len(leds)):
if leds_size[x] == 3:
tmpdata.append((0,0,0))
elif leds_size[x] == 4:
tmpdata.append((0,0,0,0))
else:
tmpdata.append((0,0,0))
sendall(tmpdata)
#sendall(tmpdata)
#sendall(tmpdata) #definitely make sure it's off
def allon():
global data
sendall(data)
def alloffsmooth():
tmpdata = data
for x in range(256):
for x in range(len(data)):
setpixel(tmpdata[x][0]-1,tmpdata[x][1]-1,tmpdata[x][2]-1, x)
sendall(tmpdata)
alloff()
def setpixelnow(r, g, b, num):
# slight optimization: send only changed universe
# unfortunately no way to manual flush data packets to only 1 controller with this sACN library
global data
setpixel(r,g,b,num)
senduniverse(data, num)
def setpixel(r, g, b, num):
global data
global leds_size
# constrain values
if r < 0:
r = 0
elif r > 255:
r = 255
if g < 0:
g = 0
elif g > 255:
g = 255
if b < 0:
b = 0
elif b > 255:
b = 255
if leds_size[num] == 3:
data[num] = (int(r), int(g), int(b))
elif leds_size[num] == 4: # cut out matching white and turn on white pixel instead
data[num] = (( int(r) - int(min(r,g,b)), int(g) - int(min(r,g,b)), int(b) - int(min(r,g,b)), int(min(r,g,b))) )
else:
data[num] = (int(r), int(g), int(b))
def close():
global sender
time.sleep(0.5)
sender.stop()
def mapimage(image, fps=60):
global start
while uptime() - start < 1/fps:
time.sleep(0.00001)
fprint(1 / (uptime() - start))
start = uptime()
minsize = min(image.shape[0:2])
leds_normalized2 = [(x * minsize,
y * minsize)
for x, y in leds_normalized]
cv2.imshow("video", image)
cv2.waitKey(1)
#im_rgb = image #cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # OpenCV uses BGR format by default
avgx = 0
avgy = 0
for xx in range(len(leds_normalized2)):
led = leds_normalized2[xx]
x, y = int(round(led[0])), int(round(led[1]))
if x < image.shape[1] and y < image.shape[0]:
#avgx += x
#avgy += y
color = tuple(image[y, x])
setpixel(color[2]/2,color[1]/2,color[0]/2,xx) # swap b & r
#print(color)
else:
#avgx += x
#avgy += y
setpixel(0,0,0,xx)
#avgx /= len(leds)
#avgy /= len(leds)
#print((avgx,avgy, max([led[0] for led in leds_adj]), max([led[1] for led in leds_adj]) , min(image.shape[0:2]) ))
global data
fastsendall(data)
if __name__ == "__main__":
init()
cap = cv2.VideoCapture('output.mp4')
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
mapimage(frame)
time.sleep(1)
close()
#sys.exit(0)