jukebox-software/led_control.py
2024-08-08 10:51:05 -05:00

845 lines
31 KiB
Python
Executable File

#!/usr/bin/env python3
import sacn
import time
import sys
import yaml
import math
import random
from util import fprint
import platform # For getting the operating system name
import subprocess # For executing a shell command
from util import win32
import cv2
import numpy as np
from uptime import uptime
class LEDSystem():
sender = None
debug = True
config = None
leds = None
leds_size = None
leds_normalized = None
controllers = None
data = None
exactdata = None
rings = None
ringstatus = None
mode = "Startup"
firstrun = True
changecount = 0
animation_time = 0
start = uptime()
solid_controllers = None
showtoggle = False
clearshow = -1
showring = -1
solidanimcount = 0
def __init__(self):
self.start = uptime()
#self.init()
#return self
def ping(self, host):
#Returns True if host (str) responds to a ping request.
# Option for the number of packets as a function of
if win32:
param1 = '-n'
param2 = '-w'
param3 = '250'
else:
param1 = '-c'
param2 = '-W'
param3 = '0.25'
# Building the command. Ex: "ping -c 1 google.com"
command = ['ping', param1, '1', param2, param3, host]
return subprocess.call(command, stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT) == 0
def map(self):
with open('config.yml', 'r') as fileread:
#global config
self.config = yaml.safe_load(fileread)
self.animation_time = self.config["animation_time"]
self.leds = list()
self.leds_size = list()
self.controllers = list()
self.solid_controllers = list()
self.rings = list(range(len(self.config["position_map"])))
print("Setting ring status")
self.ringstatus = list(range(len(self.config["position_map"])))
#print(rings)
#fprint(config["led"]["map"])
generate_map = False
map = list()
for shape in self.config["led"]["map"]:
if shape["type"] == "circle":
if generate_map:
map.append((shape["pos"][1],shape["pos"][0]))
#fprint(shape["pos"])
anglediv = 360.0 / shape["size"]
angle = 0
radius = shape["diameter"] / 2
lednum = shape["start"]
for item in self.config['position_map']:
# Check if the current item's position matches the target position
#print(item['pos'],(shape["pos"][1],shape["pos"][0]))
if tuple(item['pos']) == (shape["pos"][1],shape["pos"][0]):
self.rings[item["index"]] = (shape["pos"][1],shape["pos"][0],lednum,lednum+shape["size"]) # rings[index] = x, y, startpos, endpos
self.ringstatus[item["index"]] = [None, None]
break
if len(self.leds) < lednum + shape["size"]:
for x in range(lednum + shape["size"] - len(self.leds)):
self.leds.append(None)
self.leds_size.append(None)
while angle > -359.999:
tmpangle = angle + shape["angle"]
x = math.cos(tmpangle * (math.pi / 180.0)) * radius + shape["pos"][1] # flip by 90 degress when we changed layout
y = math.sin(tmpangle * (math.pi / 180.0)) * radius + shape["pos"][0]
self.leds[lednum] = (x,y)
lednum = lednum + 1
angle = angle - anglediv
elif shape["type"] == "strip":
angle = shape["angle"]
lednum = shape["start"]
length = shape["length"]
distdiv = length / shape["size"]
dist = distdiv / 2
xmov = math.cos(angle * (math.pi / 180.0)) * distdiv
ymov = math.sin(angle * (math.pi / 180.0)) * distdiv
pos = shape["pos"]
if len(self.leds) < lednum + shape["size"]:
for x in range(lednum + shape["size"] - len(self.leds)):
self.leds.append(None)
self.leds_size.append(None)
while dist < length:
self.leds[lednum] = (pos[0], pos[1])
pos[0] += xmov
pos[1] += ymov
dist += distdiv
lednum = lednum + 1
if generate_map:
map = sorted(map, key=lambda x: (-x[1], x[0]))
print(map)
import matplotlib.pyplot as plt
plt.axis('equal')
x, y = zip(*map)
plt.scatter(x, y, s=12)
#plt.plot(x, y, marker='o')
#plt.scatter(*zip(*leds), s=3)
for i, (x_pos, y_pos) in enumerate(map):
plt.text(x_pos, y_pos, str(i), color="red", fontsize=12)
plt.savefig("map2.png", dpi=600, bbox_inches="tight")
data = {"map": [{"index": i, "pos": str(list(pos))} for i, pos in enumerate(map)]}
yaml_str = yaml.dump(data, default_flow_style=False)
print(yaml_str)
print(self.rings)
flag = 0
for x in self.leds:
if x is None:
flag = flag + 1
if flag > 0:
fprint("Warning: Imperfect LED map ordering. Hiding undefined lights.")
for x in range(len(self.leds)):
if self.leds[x] is None:
self.leds[x] = (0, 0)
#leds = tmpleds.reverse()
#fprint(leds)
# controller mapping
for ctrl in self.config["led"]["controllers"]:
if ctrl["mode"] == "solid":
self.solid_controllers.append((ctrl["universe"]-1, ctrl["color"], ctrl["ip"]))
else:
if len(self.controllers) < ctrl["universe"]:
print(ctrl["universe"])
for x in range(ctrl["universe"] - len(self.controllers)):
self.controllers.append(None)
self.controllers[ctrl["universe"]-1] = (ctrl["ledstart"],ctrl["ledend"]+1,ctrl["ip"])
for x in range(ctrl["ledstart"],ctrl["ledend"]+1):
self.leds_size[x] = len(ctrl["mode"])
#fprint(controllers)
if(self.debug):
import matplotlib.pyplot as plt
plt.axis('equal')
for ctrl in self.controllers:
plt.scatter(*zip(*self.leds[ctrl[0]:ctrl[1]]), s=2)
#plt.scatter(*zip(*leds), s=3)
plt.savefig("map.png", dpi=600, bbox_inches="tight")
leds_adj = [(x-min([led[0] for led in self.leds]), # push to zero start
y-min([led[1] for led in self.leds]) )
for x, y in self.leds]
self.leds_normalized = [(x / max([led[0] for led in leds_adj]),
y / max([led[1] for led in leds_adj]))
for x, y in leds_adj]
#return leds, controllers
def init(self):
self.map()
self.sender = sacn.sACNsender(fps=self.config["led"]["fps"], universeDiscovery=False)
self.sender.start() # start the sending thread
for x in range(len(self.controllers)):
print("Waiting for the controller at", self.controllers[x][2], "to be online...", end="", flush=True)
count = 0
while not self.ping(self.controllers[x][2]):
count = count + 1
if count >= self.config["led"]["timeout"]:
print(" ERROR: controller still offline after " + str(count) + " seconds, continuing...")
break
else:
print(" done")
#if count < self.config["led"]["timeout"]:
for x in range(len(self.solid_controllers)):
print("Waiting for the controller at", self.solid_controllers[x][2], "to be online...", end="", flush=True)
count = 0
while not self.ping(self.solid_controllers[x][2]):
count = count + 1
if count >= self.config["led"]["timeout"]:
print(" ERROR: controller still offline after " + str(count) + " seconds, continuing...")
break
else:
print(" done")
time.sleep(1)
for x in range(len(self.controllers)):
print("Activating controller", x+1, "at", self.controllers[x][2], "with", self.controllers[x][1]-self.controllers[x][0], "LEDs.")
self.sender.activate_output(x+1) # start sending out data
self.sender[x+1].destination = self.controllers[x][2]
for x in range(len(self.solid_controllers)):
ctrl = self.solid_controllers[x]
print("Activating controller", ctrl[0], "at", ctrl[2], "with solid color ", ctrl[1])
self.sender.activate_output(ctrl[0]+1) # start sending out data
self.sender[ctrl[0]+1].destination = ctrl[2]
self.sender.manual_flush = True
# initialize global pixel data list
self.data = list()
self.exactdata = list()
for x in range(len(self.leds)):
if self.leds_size[x] == 3:
self.exactdata.append(None)
self.data.append((0,0,127))
elif self.leds_size[x] == 4:
self.exactdata.append(None)
self.data.append((50,50,255,0))
else:
self.exactdata.append(None)
self.data.append((0,0,0))
self.sendall(self.data)
#time.sleep(50000)
# fprint("Running start-up test sequence...")
# for y in range(1):
# for x in range(len(self.leds)):
# self.setpixel(0,60,144,x)
# self.sendall(self.data)
# #time.sleep(2)
# self.alloffsmooth()
self.startup_animation(show=False)
def sendall(self, datain):
# send all LED data to all controllers
# data must have all LED data in it as [(R,G,B,)] tuples in an array, 1 tuple per pixel
self.sender.manual_flush = True
for x in range(len(self.controllers)):
self.sender[x+1].dmx_data = list(sum(datain[self.controllers[x][0]:self.controllers[x][1]] , ())) # flatten the subsection of the data array
offset = len(self.controllers)
for x in range(len(self.solid_controllers)):
ctrl = self.solid_controllers[x]
data = list((0, 0, 0)) * 170
#print(len(data))
#print(len(list(ctrl[1]) * 170))
offset = 1 - (self.solidanimcount - int(self.solidanimcount))
#print("a", offset)
data[int(self.solidanimcount) * 3] = int(ctrl[1][0]*offset)
data[int(self.solidanimcount) * 3 + 1] = int(ctrl[1][1]*offset)
data[int(self.solidanimcount) * 3 + 2] = int(ctrl[1][2]*offset)
offset = 1 - offset
#print("b", offset)
if int(self.solidanimcount) <= 168:
data[int(self.solidanimcount+1) * 3] = int(ctrl[1][0]*offset)
data[int(self.solidanimcount+1) * 3 + 1] = int(ctrl[1][1]*offset)
data[int(self.solidanimcount+1) * 3 + 2] = int(ctrl[1][2]*offset)
# if offset > 0.5: # onto next light more
# # center +1
# num = int(self.solidanimcount+1)
# else:
# num = int(self.solidanimcount)
# offset = 1 - offset
# if int(num) <= 168:
# data[int(num+1) * 3] = int(ctrl[1][0]*offset/2)
# data[int(num+1) * 3 + 1] = int(ctrl[1][1]*offset/2)
# data[int(num+1) * 3 + 2] = int(ctrl[1][2]*offset/2)
# if int(num) >= 1:
# data[int(num-1) * 3] = int(ctrl[1][0]*offset/2)
# data[int(num-1) * 3 + 1] = int(ctrl[1][1]*offset/2)
# data[int(num-1) * 3 + 2] = int(ctrl[1][2]*offset/2)
self.sender[ctrl[0]+1].dmx_data = data #list(ctrl[1]) * 170
self.solidanimcount += 0.15
if int(self.solidanimcount) >= 170:
self.solidanimcount = 0
self.sender.flush()
time.sleep(0.002)
#sender.flush() # 100% reliable with 2 flushes, often fails with 1
#time.sleep(0.002)
#sender.flush()
def fastsendall(self, datain):
# send all LED data to all controllers
# data must have all LED data in it as [(R,G,B,)] tuples in an array, 1 tuple per pixel
self.sender.manual_flush = True
#print(datain[self.controllers[0][0]:self.controllers[0][1]])
for x in range(len(self.controllers)):
self.sender[x+1].dmx_data = list(sum(datain[self.controllers[x][0]:self.controllers[x][1]] , ())) # flatten the subsection of the data array
self.sender.flush()
def senduniverse(self, datain, lednum):
# send all LED data for 1 controller/universe
# data must have all LED data in it as [(R,G,B,)] tuples in an array, 1 tuple per pixel
for x in range(len(self.controllers)):
if lednum >= self.controllers[x][0] and lednum < self.controllers[x][1]:
self.sender[x+1].dmx_data = list(sum(datain[self.controllers[x][0]:self.controllers[x][1]] , ())) # flatten the subsection of the data array
self.sender.flush()
time.sleep(0.004)
#sender.flush() # 100% reliable with 2 flushes, often fails with 1
#time.sleep(0.002)
#sender.flush()
def alloff(self):
tmpdata = list()
for x in range(len(self.leds)):
if self.leds_size[x] == 3:
tmpdata.append((0,0,0))
elif self.leds_size[x] == 4:
tmpdata.append((0,0,0,0))
else:
tmpdata.append((0,0,0))
self.sendall(tmpdata)
#sendall(tmpdata)
#sendall(tmpdata) #definitely make sure it's off
return self
def allon(self):
self.sendall(self.data)
return self
def alloffsmooth(self):
tmpdata = self.data
for x in range(256):
for x in range(len(self.data)):
self.setpixel(tmpdata[x][0]-1,tmpdata[x][1]-1,tmpdata[x][2]-1, x)
self.sendall(tmpdata)
self.alloff()
return self
def setpixelnow(self, r, g, b, num):
# slight optimization: send only changed universe
# unfortunately no way to manual flush data packets to only 1 controller with this sACN library
self.setpixel(r,g,b,num)
self.senduniverse(self.data, num)
return self
def setmode(self, stmode, r=0,g=0,b=0):
if stmode is not None:
if self.mode == "Show":
self.clearshow = self.showring
if self.mode != stmode:
self.firstrun = True
self.mode = stmode
return self
def setrange(self, start, end, r,g,b):
val = (r,g,b)
for x in range(start,end):
self.data[x] = val
def setallringsexcept(self, r,g,b, exclude):
startidx1 = 0
endidx2 = len(self.leds)
endidx1 = self.rings[exclude][2]
startidx2 = self.rings[exclude][3]+1
self.setrange(startidx1, endidx1, r,g,b)
self.setrange(startidx2, endidx2, r,g,b)
def setring(self, r,g,b,idx):
ring = self.rings[idx]
for pixel in range(ring[2],ring[3]):
self.setpixel(r,g,b,pixel)
#global data
#senduniverse(data, ring[2])
return self
def runmodes(self, ring = -1, arm_position = None):
#fprint("Mode: " + str(self.mode))
if self.clearshow > -1:
self.setring(0,50,100,self.clearshow)
self.clearshow = -1
if self.mode == "Startup":
# loading animation. cable check
if self.firstrun:
self.changecount = self.animation_time * 2
self.firstrun = False
for x in range(len(self.ringstatus)):
self.ringstatus[x] = [True, self.animation_time]
if self.changecount > 0:
#fprint(self.changecount)
self.changecount = self.fadeorder(0,len(self.leds), self.changecount, 0,50,100)
else:
self.setmode("Startup2")
elif self.mode == "Startup2":
if self.firstrun:
self.firstrun = False
else:
for x in range(len(self.ringstatus)):
if self.ringstatus[x][0]:
self.setring(0, 50, 100, x)
else:
#self.ringstatus[x][1] = self.fadeall(self.rings[x][2],self.rings[x][3], self.ringstatus[x][1], 100,0,0) # not ready
self.ringstatus[x][1] = self.fadeall(self.rings[x][2],self.rings[x][3], self.ringstatus[x][1], 0,50,100)
elif self.mode == "StartupCheck":
if self.firstrun:
self.firstrun = False
for x in range(len(self.ringstatus)):
self.ringstatus[x] = [False, self.animation_time]
else:
for x in range(len(self.ringstatus)):
if self.ringstatus[x][0]:
self.ringstatus[x][1] = self.fadeall(self.rings[x][2],self.rings[x][3], self.ringstatus[x][1], 0,50,100) # ready
else:
self.setring(100, 0, 0, x)
elif self.mode == "GrabA":
if self.firstrun:
self.firstrun = False
self.changecount = self.animation_time # 100hz
if self.changecount > 0:
self.changecount = self.fadeall(self.rings[ring][2],self.rings[ring][3], self.changecount, 100,0,0)
else:
self.setring(100,0,0,ring)
self.setmode("GrabB")
elif self.mode == "GrabB":
if self.firstrun:
self.firstrun = False
self.changecount = self.animation_time # 100hz
if self.changecount > 0:
#self.changecount = self.fadeorder(self.rings[ring][2],self.rings[ring][3], self.changecount, 0,100,0)
self.changecount = self.fadeorder(self.rings[ring][2],self.rings[ring][2]+24, self.changecount, 0,100,0)
else:
self.setring(0,100,0,ring)
self.setmode("Idle")
elif self.mode == "GrabC":
if self.firstrun:
self.firstrun = False
self.changecount = self.animation_time # 100hz
if self.changecount > 0:
self.changecount = self.fadeall(self.rings[ring][2],self.rings[ring][3], self.changecount, 0,50,100)
else:
self.setring(0,50,100,ring)
self.setmode("Idle")
elif self.mode == "GrabAA":
print("GrabAA")
if self.firstrun:
self.firstrun = False
self.changecount = self.animation_time # 100hz
if self.changecount > 0:
self.changecount = self.fadeall(self.rings[ring][2],self.rings[ring][3], self.changecount, 100,0,0)
else:
self.setring(100,0,0,ring)
self.setmode("Idle")
elif self.mode == "GrabAB":
if self.firstrun:
self.firstrun = False
self.changecount = self.animation_time # 100hz
if self.changecount > 0:
#self.changecount = self.fadeorder(self.rings[ring][2],self.rings[ring][3], self.changecount, 0,100,0)
self.changecount = self.fadeorder(self.rings[ring][2],self.rings[ring][2]+24, self.changecount, 0,100,0)
else:
self.setring(0,100,0,ring)
self.setmode("Idle")
elif self.mode == "Show":
if self.firstrun:
self.showring = ring
self.firstrun = False
self.showtoggle = False
self.changecount = self.animation_time / 2 # 100hz
if self.changecount > 0:
#self.changecount = self.fadeorder(self.rings[ring][2],self.rings[ring][3], self.changecount, 0,100,0)
if not self.showtoggle:
self.changecount = self.fadeorder(self.rings[ring][2],self.rings[ring][2]+24, self.changecount, 0,100,0)
else:
self.changecount = self.fadeorder(self.rings[ring][2],self.rings[ring][2]+24, self.changecount, 100,20,100)
else:
self.changecount = self.animation_time / 2 # 100hz
self.showtoggle = not self.showtoggle
elif self.mode == "Idle":
if self.firstrun:
self.firstrun = False
if arm_position is not None:
posxy = list()
posxy.append(int(arm_position[0] * 1000)) # x convert m to mm
posxy.append(int(arm_position[1] * 1000)) # y
radius = int(arm_position[2] * 1000) / 3
base = (0,50,100)
target = (100,100,100)
deltar = target[0] - base[0]
deltag = target[0] - base[0]
#deltab = target[0] - base[0]
# reset!
self.setallringsexcept(0,50,100, ring)
exclude = self.rings[ring][2],self.rings[ring][3]
# fade outwards
for idx,led in enumerate(self.leds):
if posxy[0] - led[0] < radius and posxy[1] - led[1] < radius and idx < exclude[0] or idx > exclude[1]:
dist = math.isqrt(int(math.pow(int(posxy[0] - led[0]), 2) + math.pow(int(posxy[1] - led[1]), 2)))
#dist = max(posxy[0] - led[0], posxy[1] - led[1])
if dist < radius:
ratio = 1 - dist/radius
#if ratio < 0:
# ratio = 0
self.data[idx] = (int(base[0] + ratio * deltar), int(base[1] + ratio * deltag), 100) #base[2] + ratio * deltab)
else:
#print("No arm position!")
pass
self.sendall(self.data)
return self
def fadeall(self, idxa,idxb,sizerem,r,g,b):
if sizerem < 1:
return 0
sum = 0
for x in range(idxa,idxb):
if self.exactdata[x] is None:
self.exactdata[x] = self.data[x]
old = self.exactdata[x]
dr = (r - old[0])/sizerem
sum += abs(dr)
dr += old[0]
dg = (g - old[1])/sizerem
sum += abs(dg)
dg += old[1]
db = (b - old[2])/sizerem
db += old[2]
sum += abs(db)
self.exactdata[x] = (dr, dg, db)
#print(new)
self.setpixel(dr, dg, db, x)
if sizerem == 1:
self.exactdata[x] = None
if sum == 0 and sizerem > 2:
sizerem = 2
return sizerem - 1
def fadeorder(self, idxa,idxb,sizerem,r,g,b):
if sizerem < 1:
return 0
drs = 0
dgs = 0
dbs = 0
sum = 0
for x in range(idxa,idxb):
if self.exactdata[x] is None:
self.exactdata[x] = self.data[x]
old = self.exactdata[x]
dr = (r - old[0])
dg = (g - old[1])
db = (b - old[2])
drs += dr
dgs += dg
dbs += db
drs /= sizerem
dgs /= sizerem
dbs /= sizerem
sum += abs(drs) + abs(dgs) + abs(dbs)
#print(drs,dgs,dbs)
for x in range(idxa,idxb):
old = self.exactdata[x]
new = list(old)
if drs > 0:
if old[0] + drs > r:
new[0] = r
drs -= r - old[0]
else:
new[0] = old[0] + drs
drs = 0
if dgs > 0:
if old[1] + dgs > g:
new[1] = g
dgs -= g - old[1]
else:
new[1] = old[1] + dgs
dgs = 0
if dbs > 0:
if old[2] + dbs > b:
new[2] = b
dbs -= b - old[2]
else:
new[2] = old[2] + dbs
dbs = 0
if drs < 0:
if old[0] + drs < r:
new[0] = r
drs -= r - old[0]
else:
new[0] = old[0] + drs
drs = 0
if dgs < 0:
if old[1] + dgs < g:
new[1] = g
dgs -= g - old[1]
else:
new[1] = old[1] + dgs
dgs = 0
if dbs < 0:
if old[2] + dbs < b:
new[2] = b
dbs -= b - old[2]
else:
new[2] = old[2] + dbs
dbs = 0
if drs != 0 or dgs != 0 or dbs != 0:
self.exactdata[x] = new
self.setpixel(new[0],new[1],new[2],x)
if sizerem == 1:
self.exactdata[x] = None
if sum == 0 and sizerem > 2:
sizerem = 2
return sizerem - 1
def setpixel(self, r, g, b, num):
# constrain values
if r < 0:
r = 0
elif r > 255:
r = 255
if g < 0:
g = 0
elif g > 255:
g = 255
if b < 0:
b = 0
elif b > 255:
b = 255
if self.leds_size[num] == 3:
self.data[num] = (int(r), int(g), int(b))
elif self.leds_size[num] == 4: # cut out matching white and turn on white pixel instead
self.data[num] = (( int(r) - int(min(r,g,b)), int(g) - int(min(r,g,b)), int(b) - int(min(r,g,b)), int(min(r,g,b))) )
else:
self.data[num] = (int(r), int(g), int(b))
return self
def setpixelfast3(self, rgb, num):
self.data[num] = rgb
def close(self):
time.sleep(0.5)
self.sender.stop()
return self
def mapimage(self, image, fps=30):
#fprint(1 / (uptime() - self.start))
self.start = uptime()
minsize = min(image.shape[0:2])
if image.shape[1] > image.shape[0]:
offset = (image.shape[1] - image.shape[0])/2
leds_normalized2 = [(x * minsize + offset,
y * minsize)
for x, y in self.leds_normalized]
else:
offset = (image.shape[0] - image.shape[1])/2
leds_normalized2 = [(x * minsize,
y * minsize + offset)
for x, y in self.leds_normalized]
cv2.imshow("video", image)
cv2.waitKey(1)
#im_rgb = image #cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # OpenCV uses BGR format by default
avgx = 0
avgy = 0
for xx in range(len(leds_normalized2)):
led = leds_normalized2[xx]
x, y = int(round(led[0])), int(round(led[1]))
yinv = image.shape[0]-1
if x < image.shape[1] and y < image.shape[0]:
#avgx += x
#avgy += y
color = tuple(image[yinv-y, x])
self.setpixel(color[2]/2,color[1]/2,color[0]/2,xx) # swap b & r
#print(color)
else:
#avgx += x
#avgy += y
self.setpixel(0,0,0,xx)
#avgx /= len(leds)
#avgy /= len(leds)
#print((avgx,avgy, max([led[0] for led in leds_adj]), max([led[1] for led in leds_adj]) , min(image.shape[0:2]) ))
self.fastsendall(self.data)
while self.start + 1.0/fps > uptime():
time.sleep(0.00001)
return self
def mainloop(self, stmode, ring = -1, fps = 100, preview = False, arm_position = None):
while uptime() - self.start < 1/fps:
time.sleep(0.00001)
#fprint("Running LED loop with ring " + str(ring) + " and set mode " + str(stmode))
#fprint(1 / (uptime() - self.start))
self.start = uptime()
if self.mode is not None:
self.setmode(stmode)
#if self.
self.runmodes(ring, arm_position)
if preview:
self.drawdata()
return self
def drawdata(self):
#tmp = list()
#for x in len(leds):
# led = leds[x]
# tmp.append((led[0], led[1], data[x]))
x = [led[0] for led in self.leds]
y = [led[1] for led in self.leds]
colors = self.data
colors_normalized = [(x[0]/255, x[1]/255, x[2]/255) for x in colors]
# Plot the points
plt.scatter(x, y, c=colors_normalized)
# Optional: add grid, title, and labels
plt.grid(True)
plt.title('Colored Points')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
plt.savefig("map3.png", dpi=50, bbox_inches="tight")
plt.clf()
return self
def startup_animation(self, show):
stmode = "Startup"
self.mainloop(stmode, preview=show)
while self.mode == "Startup":
self.mainloop(None, preview=show)
for x in range(54):
self.ringstatus[x][0] = False
self.mainloop(None, preview=show)
for x in range(self.animation_time):
self.mainloop(None, preview=show)
self.clear_animations()
stmode = "Idle"
self.mainloop(stmode, preview=show)
self.clear_animations()
return self
def clear_animations(self):
for x in range(len(self.leds)):
self.exactdata[x] = None
return self
def do_animation(self, stmode, ring=-1):
self.mainloop(stmode, ring, preview=show)
self.wait_for_animation(ring)
return self
def start_animation(self, stmode, ring=-1):
self.mainloop(stmode, ring, preview=show)
return self
def wait_for_animation(self, ring=-1):
while self.mode != "Idle":
self.mainloop(None, ring, preview=show)
return self
if __name__ == "__main__":
import matplotlib.pyplot as plt
ledsys = LEDSystem()
ledsys.init()
while True:
cap = cv2.VideoCapture('output.mp4')
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
ledsys.mapimage(frame, fps=60)
show = False
ring = 1
ledsys.startup_animation(show)
for x in range(54):
ledsys.ringstatus[x][0] = True
ledsys.mainloop(None, preview=show)
for x in range(ledsys.animation_time):
ledsys.mainloop(None, preview=show)
ledsys.do_animation("GrabA", 1)
ledsys.do_animation("GrabA", 5)
ledsys.start_animation("GrabC", 1)
ledsys.wait_for_animation(1)
ledsys.do_animation("GrabC", 5)
ledsys.close()
#sys.exit(0)
# blue : default
# green : target
# yellow : crosshair
# red : missing
# uninitialized : red/purple?