import urx import math3d as m3d from scipy.optimize import fsolve import math import numpy as np import time import os import logging from urx.robotiq_two_finger_gripper import Robotiq_Two_Finger_Gripper import sys from util import fprint rob = None def init(ip): global rob #sys.stdout = Logger() fprint("Starting UR5 power up...") # power up robot here # wait for power up (this function runs async) # trigger auto-initialize # wait for auto-initialize # init urx fprint("Connecting to arm at " + ip) trying = True while trying: try: rob = urx.Robot(ip) trying = False except: time.sleep(1) robotiqgrip = Robotiq_Two_Finger_Gripper(rob) # Sets robot arm endpoint offset (x,y,z,rx,ry,rz) rob.set_tcp((0, 0, 0.15, 0, 0, 0)) # Set weight rob.set_payload(2, (0, 0, 0.1)) #rob.set_payload(2, (0, 0, 0.1)) time.sleep(0.2) fprint("UR5 ready.") def set_pos_abs(x, y, z, xb, yb, zb, threshold=None): global rob new_orientation = m3d.Transform() new_orientation.orient.rotate_xb(xb) # Replace rx with the desired rotation around X-axis new_orientation.orient.rotate_yb(yb) # Replace ry with the desired rotation around Y-axis new_orientation.orient.rotate_zb(zb) # Replace rz with the desired rotation around Z-axis # Get the current pose trans = rob.getl() # Apply the new orientation while keeping the current position new_trans = m3d.Transform(new_orientation.orient, m3d.Vector(trans[0:3])) new_trans.pos.x = x new_trans.pos.y = y new_trans.pos.z = z #rob.speedj(0.2, 0.5, 99999) rob.set_pose(new_trans, acc=2, vel=2, command="movej", threshold=threshold) # apply the new pose def set_pos_rel_rot_abs(x, y, z, xb, yb, zb): global rob new_orientation = m3d.Transform() new_orientation.orient.rotate_xb(xb) # Replace rx with the desired rotation around X-axis new_orientation.orient.rotate_yb(yb) # Replace ry with the desired rotation around Y-axis new_orientation.orient.rotate_zb(zb) # Replace rz with the desired rotation around Z-axis # Get the current pose trans = rob.getl() # Apply the new orientation while keeping the current position new_trans = m3d.Transform(new_orientation.orient, m3d.Vector(trans[0:3])) new_trans.pos.x += x new_trans.pos.y += y new_trans.pos.z += z #rob.speedj(0.2, 0.5, 99999) rob.set_pose(new_trans, acc=0.1, vel=0.4, command="movej") # apply the new pose def set_pos_abs_rot_rel(x, y, z, xb, yb, zb): global rob new_orientation = m3d.Transform() new_orientation.orient.rotate_xb(xb) # Replace rx with the desired rotation around X-axis new_orientation.orient.rotate_yb(yb) # Replace ry with the desired rotation around Y-axis new_orientation.orient.rotate_zb(zb) # Replace rz with the desired rotation around Z-axis # Get the current pose trans = rob.getl() # Apply the new orientation while keeping the current position new_trans = m3d.Transform(new_orientation.orient, m3d.Vector(trans[0:3])) new_trans.pos.x = x new_trans.pos.y = y new_trans.pos.z = z #rob.speedj(0.2, 0.5, 99999) rob.set_pose(new_trans, acc=0.1, vel=0.4, command="movej") # apply the new pose def is_safe_move(start_pose, end_pose, r=0.25): start_x, start_y = (start_pose[0], start_pose[1]) end_x, end_y = (end_pose[0], end_pose[1]) try: m = (end_y-start_y)/(end_x-start_x) b = start_y - m*start_x # print('m = y/x =', m) # print('b =', b) except: m = (end_x-start_x)/(end_y-start_y) b = start_x - m*start_y # print('m = x/y =', m) # print('b =', b) return r**2 - b**2 + m**2 * r**2 < 0 def cartesian_to_polar(x, y): r = np.sqrt(x**2 + y**2) theta = np.arctan2(y, x) return r, theta def polar_to_cartesian(r, theta): x = r * np.cos(theta) y = r * np.sin(theta) return x, y def move_to_polar(start_pos, end_pos): global rob # Convert to polar coordinates start_r, start_theta = cartesian_to_polar(start_pos[0], start_pos[1]) end_r, end_theta = cartesian_to_polar(end_pos[0], end_pos[1]) # Interpolate for xy (spiral arc) n_points = 30 r_intermediate = np.linspace(start_r, end_r, n_points) theta_intermediate = np.linspace(start_theta, end_theta, n_points) # Interpolate for z (height) start_z = start_pos[2] end_z = end_pos[2] z_intermediate = np.linspace(start_z, end_z, n_points) # Interpolate for rz (keep tool rotation fixed relative to robot) curr_rot = rob.getl() theta_delta = theta_intermediate[1]-theta_intermediate[0] rx_intermediate = [curr_rot[5] + theta_delta*i for i in range(n_points)] # curr_rot = rob.getj() # start_rz = curr_rot[5] # rot = end_theta - start_theta # end_base_joint = curr_rot[0]-start_theta + rot # end_rz = curr_rot[0] + rot # # rob.movel([*polar_to_cartesian(end_r, end_theta), *rob.getl()[2:]], acc=2, vel=2) # print('start_theta = ', math.degrees(start_theta)) # print('end_theta = ', math.degrees(curr_rot[0]-start_theta+rot)) # print('start_rz =', math.degrees(start_rz)) # print('rot =', math.degrees(rot)) # print('end_rz =', math.degrees(end_rz)) # rz_intermediate = np.linspace(start_rz, end_rz, n_points) # Convert back to cartesian coordinates curr_pos = rob.getl() intermediate_points = [[*polar_to_cartesian(r, theta), z, *curr_pos[3:]] for r, theta, z, rx in zip(r_intermediate, theta_intermediate, z_intermediate, rx_intermediate)] # Move robot rob.movels(intermediate_points, acc=2, vel=2, radius=0.1) return rx_intermediate def move_to_home(): global rob # Home position in degrees home_pos = [0.10421807948612624, -2.206111555015423, 1.710679229503537, -1.075834511928354, -1.569301366430687, 1.675098295930943] # Move robot rob.movej(home_pos, acc=2, vel=2) def normalize_degree(theta): # Normalizes degree theta from -1.5pi to 1.5pi multiplier = 1 normalized_theta = theta % (math.pi * multiplier) # Maintain the negative sign if the original angle is negative if theta < 0: normalized_theta -= math.pi * multiplier # Return angle return normalized_theta def get_joints_from_xyz_rel(x, y, z, rx=0, ry=-math.pi/2, rz=0, initial_guess = (math.pi/2, math.pi/2, 0)): # Get limbs and offsets offset_x, offset_y, offset_z = (0, 0, 0.14) # Tool offset l_bs, l1, l2, l3, l_wt = (0.1333, .425, .39225, .1267, .0997) # Limb lengths #l3=0.15 # Calculate base angle and r relative to shoulder joint def calculate_theta(x, y, a): # Calculate if we need the + or - in our equations if (x>-a and y>=0) or (x>a and y<0): flip = 1 elif (x<-a and y>=0) or (x